{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Curve fitting and the $\\chi^2$ error surface\n", "#### Material to accompany Hughes and Hase Section 6.5\n", "\n", "Marty Ligare August 2020; modified March 2022 -- NFL, March 2023 -- Tom" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from scipy import optimize\n", "from scipy import stats\n", "\n", "import urllib # for importing data from URL\n", "\n", "import matplotlib as mpl\n", "from mpl_toolkits.mplot3d import Axes3D\n", "import matplotlib.pyplot as plt\n", "from matplotlib import cm\n", "from matplotlib.ticker import LinearLocator, FormatStrFormatter" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Following is an Ipython magic command that puts figures in notebook.\n", "%matplotlib notebook\n", "\n", "# M.L. modification of matplotlib defaults\n", "# Changes can also be put in matplotlibrc file, \n", "# or effected using mpl.rcParams[]\n", "mpl.style.use('classic') \n", "plt.rc('figure', figsize = (6, 4.5)) # Reduces overall size of figures\n", "plt.rc('axes', labelsize=16, titlesize=14)\n", "plt.rc('figure', autolayout = True) # Adjusts supblot params for new size" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Define functions" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def f(x,m,b):\n", " '''Simple linear function with slope m and intercept b'''\n", " return x*m + b\n", "\n", "def chi2(x, y, u, m, b):\n", " '''Chisquare as a function of data (x, y, and yerr=u), and model \n", " parameters slope and intercept (m and b)'''\n", " return np.sum((y - f(x, m, b))**2/u**2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Linear fit to data for $m$ and $b$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Data to be fit:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# To load from a file, use\n", "# g = urllib.request.urlopen('https://www.eg.bucknell.edu/~phys310/skills/data_analysis/data3.dat')\n", "# data = np.loadtxt(g)\n", "# x, y, u = data.T\n", "# \n", "# Or: data = np.loadtxt(\"file.dat\") \n", "# Format: [[x1,y1,u1], [x2,y2,u2], ... ] where u1 is uncertainty in y1\n", "data = np.array([[1, 2.947032612427293, 0.5],\n", " [2, 6.168779380682309, 0.5],\n", " [3, 7.1618838821688, 0.5],\n", " [4, 9.590549514954866, 0.5],\n", " [5, 11.20657, 0.5],\n", " [6, 12.3123, 0.5],\n", " [7, 15.0221,0.5],\n", " [8, 16.9281, 0.5],\n", " [9, 18.8221, 0.5],\n", " [10., 21.7221, 0.5]])\n", "\n", "x, y, u = data.T" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "xc = np.linspace(0,6,201) # quasi-continuous set of x's for function plot\n", "plt.figure()\n", "plt.title(\"data\",fontsize=14)\n", "plt.xlabel('$x$')\n", "plt.ylabel('$y$')\n", "plt.axhline(0,color='magenta')\n", "plt.xlim(0,10) \n", "plt.errorbar(x,y,yerr=u,fmt='o');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Perform fit" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "popt, pcov = optimize.curve_fit(f, x, y, sigma=u, absolute_sigma=True)\n", "\n", "slope = popt[0]\n", "alpha_m = np.sqrt(pcov[0,0]) # Std error in slope\n", "intercept = popt[1]\n", "alpha_b = np.sqrt(pcov[1,1]) # Std error in intercept\n", "\n", "print(\"slope =\", slope,\"+/-\", alpha_m,\"\\n\")\n", "print(\"intercept =\", intercept,\"+/-\", alpha_b,\"\\n\")\n", "\n", "print(\"covariance matrix =\",\"\\n\",pcov,\"\\n\")\n", "pcov_data = pcov\n", "\n", "print(\"chi2 =\", chi2(x, y, u,*popt))\n", "# print(\"reduced chi2 = chi2/(len(x)-len(popt)) =\", chi2(x, y, u, *popt)/(len(x)-len(popt)))\n", "\n", "a = chi2(x,y,u,*popt)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "xc = np.linspace(0,10,201) # quasi-continuous set of x's function plot\n", "plt.figure()\n", "plt.title(\"data with best fit line\",fontsize=14)\n", "plt.xlabel('$x$')\n", "plt.ylabel('$y$')\n", "plt.axhline(0, color='magenta')\n", "plt.xlim(0,10) # Pad x-range on plot\n", "plt.errorbar(x, y, yerr=u, fmt='o');\n", "plt.plot(xc ,f(xc, slope, intercept));" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Residuals:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "plt.figure()\n", "plt.axhline(0,color='magenta')\n", "plt.title('normalized residuals')\n", "plt.xlabel('$x$')\n", "plt.ylabel('normalized residuals')\n", "plt.grid(True)\n", "plt.errorbar(x,(f(x,slope,intercept)-y)/u,1,fmt='o')\n", "plt.xlim(0,10);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### What confidence can we have in the model?\n", "If normalized residuals look ok:\n", "+ Assume the model, along with the best fit parameters are ok (\"null hypothesis\") \n", "+ Generate simulated data based on the model, best-fit parameters, and uncertainties.\n", "(Use same $x$ values).\n", "+ Fit each of the simulated data sets\n", "+ What's the probability of getting values of $\\chi^2$ from the simulated data sets \n", "that are greater than the value given by the data that was actually measured.\n", "In other words, is our value of $\\chi^2$ a reasonable result given the fluctuations we\n", "expect in our data?" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "n_sim = 10000 # Number of data sets to simulate\n", "count = 0\n", "for i in range(n_sim):\n", " mSim = np.array([]) # Array for simulated slopes\n", " bSim = np.array([]) # Array for simulated intercepts\n", " chi_sim = np.array([]) # Array for chisq from simulated sets\n", "\n", "for i in range(n_sim):\n", " ySim = stats.norm.rvs(slope*x+intercept,u) # Generate simulated data set\n", " popt, pcov = optimize.curve_fit(f, x, ySim, sigma=u, absolute_sigma=True) # Fit simulated data\n", " bSim = np.append(bSim, popt[1]) # Record intercept\n", " mSim = np.append(mSim, popt[0]) # Record slope\n", " aa = chi2(x,ySim,u,*popt) \n", " chi_sim = np.append(chi_sim, aa)\n", " if aa > a:\n", " count += 1\n", " \n", "print(count/n_sim)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "1 - stats.chi2.cdf(3.700621, df=3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Make \"data\" for contour plot\n", "+ Choose ranges of $m$ and $b$ for contour plot\n", "+ Make meshgrid of slope and intercept values\n", "+ Calculate values of $\\chi^2$ at grid points" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "m = np.linspace(1.5, 2.5, 201) # NOTE: You need to change the range of m to encompass your best fit value for slope (see above)\n", "b = np.linspace(0.5, 2.5, 201) # NOTE: You need to change the range of b to encompass your best fit value for the intercept\n", "M, B = np.meshgrid(m, b, indexing='ij')\n", "\n", "Z = np.zeros((len(m),len(b)))\n", "\n", "for i in range(len(m)):\n", " for j in range(len(b)):\n", " Z[i,j] = chi2(x, y, u, m[i],b[j]) - chi2(x, y, u, *popt)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "plt.figure()\n", "CS = plt.contour(M, B, Z, levels=[1,2.7,4,9]) # contour plots of chi2 = 1, 2.7, 4, 9 above chi2_min\n", "#\n", "#SC = plt.scatter(mSim, bSim, s=0.01) # overlay scatterplot of simulted data\n", "#\n", "plt.xlabel('$m$')\n", "plt.ylabel('$b$')\n", "plt.grid()\n", "plt.axhline(intercept)\n", "#plt.axhline(intercept + alpha_b, linestyle='--')\n", "#plt.axhline(intercept - alpha_b, linestyle='--')\n", "plt.axvline(slope)\n", "#plt.axvline(slope + alpha_m,linestyle='--')\n", "#plt.axvline(slope - alpha_m,linestyle='--')\n", "plt.clabel(CS, inline=1, fontsize=10);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Correlation between fit parameters\n", "\n", "Note that the contours are tilted and squashed; this indicates that there is correlation between the two fit parameters, mainly caused because the y-intercept is not within the data range. These elongated contours are telling you that a small change in $m$ can, to some extent, be compensated for by a corresponding change in $b$.\n", "\n", "Fits with correlated data aren't great, because they tend to lead to an overestimation of the uncertainties in the fit parameters. In this case, note tha thte uncertainty in $b$ is $\\sim 0.5$ due to this correlation effect.\n", "\n", "We can do better if we perform our linear fit on a dataset whose x-values are centered on $x=0$." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "x_mean = np.mean(x) # determine the center of the distribution of x values\n", "x_shift = x - x_mean # shift the array so that the x data are centered on x = 0\n", "plt.figure()\n", "plt.title(\"shifted data\",fontsize=14)\n", "plt.xlabel('$x_{shift}$')\n", "plt.ylabel('$y$')\n", "plt.axhline(0,color='magenta')\n", "plt.xlim(0-x_mean,10-x_mean) \n", "plt.errorbar(x_shift,y,yerr=u,fmt='o');\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "popt, pcov = optimize.curve_fit(f, x_shift, y, sigma=u, absolute_sigma=True)\n", "\n", "slope = popt[0]\n", "alpha_m = np.sqrt(pcov[0,0]) # Std error in slope\n", "intercept = popt[1]\n", "alpha_b = np.sqrt(pcov[1,1]) # Std error in intercept\n", "\n", "print(\"slope =\", slope,\"+/-\", alpha_m,\"\\n\")\n", "print(\"intercept =\", intercept,\"+/-\", alpha_b,\"\\n\")\n", "\n", "print(\"covariance matrix =\",\"\\n\",pcov,\"\\n\")\n", "pcov_data = pcov\n", "\n", "print(\"chi2 =\", chi2(x_shift, y, u,*popt))\n", "# print(\"reduced chi2 = chi2/(len(x)-len(popt)) =\", chi2(x, y, u, *popt)/(len(x)-len(popt)))\n", "\n", "a = chi2(x_shift,y,u,*popt)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "m = np.linspace(1.7, 2.3, 201)\n", "b = np.linspace(11.7, 12.7, 201)\n", "M, B = np.meshgrid(m, b, indexing='ij')\n", "\n", "Z = np.zeros((len(m),len(b)))\n", "\n", "for i in range(len(m)):\n", " for j in range(len(b)):\n", " Z[i,j] = chi2(x_shift, y, u, m[i],b[j]) - chi2(x_shift, y, u, *popt)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.figure()\n", "CS = plt.contour(M, B, Z, levels=[1,2.7,4,9]) # contour plots of chi2 = 1, 2.7, 4, 9 above chi2_min\n", "#\n", "#SC = plt.scatter(mSim, bSim, s=0.01) # overlay scatterplot of simulted data\n", "#\n", "plt.xlabel('$m$')\n", "plt.ylabel('$b$')\n", "plt.grid()\n", "plt.axhline(intercept)\n", "#plt.axhline(intercept + alpha_b, linestyle='--')\n", "#plt.axhline(intercept - alpha_b, linestyle='--')\n", "plt.axvline(slope)\n", "#plt.axvline(slope + alpha_m,linestyle='--')\n", "#plt.axvline(slope - alpha_m,linestyle='--')\n", "plt.clabel(CS, inline=1, fontsize=10);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Version information\n", "\n", "+ %version_information is an IPython magic extension for showing version information for dependency modules in a notebook; \n", "\n", "+ See `https://github.com/jrjohansson/version_information`\n", "\n", "+ `%version_information` is available on Bucknell computers on the linux network. You can easily install it on\n", "any computer." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "%load_ext version_information" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%version_information numpy, scipy, matplotlib" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" } }, "nbformat": 4, "nbformat_minor": 1 }