{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Using the $\\chi^2$ test of a distribution: Is this a fair die?\n", "\n", "In this notebook I provide two data sets from the roll of a nominally standard 6-sided die.\n", "The question is: Is this a fair die, or not? The data is an array of integers chosen \n", "from the set {0,1,2,3,4,5}. (We could make this set be {1,2,3,4,5,6} to correspond to the \n", "numbers on a die, but with python it's easier to start at 0.)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from scipy import stats\n", "from scipy import optimize\n", "\n", "import matplotlib as mpl # As of July 2017 Bucknell computers use v. 2.x \n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "# Following is an Ipython magic command that puts figures in the notebook.\n", "%matplotlib notebook\n", "\n", "# As of Aug. 2017 reverting to 1.x defaults.\n", "# In 2.x text.ustex requires dvipng, texlive-latex-extra, and texlive-fonts-recommended, \n", "# which don't seem to be universal\n", "# See https://stackoverflow.com/questions/38906356/error-running-matplotlib-in-latex-type1cm?\n", "mpl.style.use('classic')\n", " \n", "# M.L. modifications of matplotlib defaults using syntax of v.2.0 \n", "# More info at http://matplotlib.org/2.0.0/users/deflt_style_changes.html\n", "# Changes can also be put in matplotlibrc file, or effected using mpl.rcParams[]\n", "plt.rc('figure', figsize = (6, 4.5)) # Reduces overall size of figures\n", "plt.rc('axes', labelsize=16, titlesize=14)\n", "plt.rc('figure', autolayout = True) # Adjusts supblot parameters for new size" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "xk = np.arange(6)\n", "# or xk = np.linspace(0,5,6, dtype=int)\n", "pk = np.ones(6)/6.\n", "custm = stats.rv_discrete(name='custm', values=(xk, pk))" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.16466667 0.16466667 0.16466667 0.16466667 0.16466667 0.17666667]\n", "0.9999999999999999\n" ] } ], "source": [ "d = 0.01\n", "pk2 = pk - d/5\n", "pk2[5] += d/5 + d\n", "custm2 = stats.rv_discrete(name='custm', values=(xk, pk2))\n", "print(pk2)\n", "print(sum(pk2))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The data is an array of integers from 0 to 5, " ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "data = custm2.rvs(size=50000)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[8228 8183 8414 8304 8121 8750]\n" ] } ], "source": [ "o = np.bincount(data, minlength=6)\n", "print(o)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "e = len(data)*np.ones(6)/6." ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "31.17112\n" ] } ], "source": [ "chi2_data = np.sum((o-e)**2/e)\n", "print(chi2_data)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2.351167146075195e-05" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "1 - stats.chi2.cdf(chi2_data, 6)" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [], "source": [ "np.bincount?" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0, 1, 2, 3, 4, 5])" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.arange(6)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0, 1, 2, 3, 4, 5])" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.linspace(0,5,6, dtype=int)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "np.savetxt('die_50000.dat',data)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "np.savetxt?" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.6" } }, "nbformat": 4, "nbformat_minor": 2 }