Error propagation: Three approaches

  • H&H 'Functional' Approach
  • Monte Carlo simulation
  • H&H 'Calculus' Approach

We will use a simple example of a formula for a physical quantitity $g$ which depends on $x$, $y$, and $z$:

$$ f(x,y,z) = \frac{xy}{z^2}. $$

Let's assume that we have measured the following values:

  • $x = 1.00 \pm 0.05$
  • $y = 2.00 \pm 0.07$
  • $z = 3.00 \pm 0.12$
In [1]:
import numpy as np
from scipy import stats
In [2]:
def f(x,y,z):
    '''Model function for error propagation examples'''
    return x*y/z**2

Assign values to variables $x$, $y$, and $z$, with associated uncertainties

In [3]:
x = 1.
alpha_x = 0.05

y = 2.
alpha_y = 0.07

z = 3.
alpha_z = 0.12

"Best" value of $f$

In [4]:
best = f(x,y,z)
print(best)
0.2222222222222222

"Functional approach"

\begin{eqnarray*} (\alpha_f)_x &=& f(x+\alpha_x,y,z) - f(x,y,z) \\ (\alpha_f)_y &=& f(x, y+\alpha_y,z) - f(x,y,z)\\ (\alpha_f)_z &=& f(x,y, z+\alpha_z) - f(x,y,z)\\ \mbox{}\\ \alpha_f &=& \sqrt{(\alpha_f)_x^2 + (\alpha_f)_y^2 +(\alpha_f)_z^2 } \end{eqnarray*}

Create an arrayu to hold the values $(\alpha_f)_x$, $(\alpha_f)_x$, and $(\alpha_f)_z$.

In [5]:
u = np.zeros(3)
u[0] = f(x+alpha_x, y, z)
u[1] = f(x, y+alpha_y, z)
u[2] = f(x, y, z + alpha_z)
u = u-best

Calculate total uncertainty

$$ \alpha_f = \sqrt{\left(\alpha_f\right)^2_x + \left(\alpha_f\right)^2_y + \left(\alpha_f\right)^2_z} $$
In [7]:
unc = np.sqrt(u@u)
print(unc)
0.021564448330840195

Final Result: $0.22\pm 0.02$

Fractional uncertainties

In [8]:
print("Fractional uncertainties", u/best)
Fractional uncertainties [ 0.05        0.035      -0.07544379]
$$ \frac{\alpha_x}{f} = 5\%, \quad\quad \frac{\alpha_y}{f}= 3.5\%, \quad\mbox{and}\quad \frac{\alpha_z}{f} = 7.5\% $$

Monte Carlo technique

When we write something like $x = 1.00 \pm 0.05$ it means that we believe that $x$ is a random variable selected from a normal distribution with a mean of $1.00$ and a standard deviation of $0.05$. In this technique we simulate very many experiments with values drawn from the appropriate distributions.

In [9]:
nEx = 10000     #Number of simulated experiments
x_sim = stats.norm.rvs(x,alpha_x,nEx)   # array for simulated values of x
y_sim = stats.norm.rvs(y,alpha_y,nEx)   # array for simulated values of y
z_sim = stats.norm.rvs(z,alpha_z,nEx)   # array for simulated values of z 

Calculate values of $f$ using simulated data

In [10]:
f_sim = f(x_sim, y_sim, z_sim)
print(np.mean(f_sim), np.std(f_sim))
0.22355457533480017 0.022514402883885898

Result: $0.22 \pm 0.02$

"Calculus approach"

\begin{eqnarray*} (\alpha_f)_x &=& \left. \frac{\partial f}{\partial x}\right|_{x = 1.0\, y = 2.0\, z=3.0}\, \alpha_x \\ (\alpha_f)_y &=& \left. \frac{\partial f}{\partial y}\right|_{x = 1.0\, y = 2.0\, z=3.0}\, \alpha_y \\ (\alpha_f)_z &=& \left. \frac{\partial f}{\partial z}\right|_{x = 1.0\, y = 2.0\, z=3.0}\, \alpha_z\\ \mbox{}\\ \alpha_f &=& \sqrt{(\alpha_f)_x^2 +(\alpha_f)_y^2 + (\alpha_f)_z^2} \end{eqnarray*}

In this example the partial derivatives are easy:

$$ \frac{\partial f}{\partial x} = \frac{y}{z^2}\quad\quad \frac{\partial f}{\partial y} = \frac{x}{z^2}\quad\quad \frac{\partial f}{\partial y} = -\frac{2xy}{z^3}. $$
In [11]:
alpha_f_x = alpha_x*y/z**2
alpha_f_y = alpha_y*x/z**2
alpha_f_z = -2*alpha_z*x*y/z**3

alpha_f = np.sqrt(alpha_f_x**2 + alpha_f_x**2 + alpha_f_z**2 )

print(alpha_f)
0.023726840560069584

Result: $0.22 \pm 0.2$

Version Information

version_information is from J.R. Johansson (jrjohansson at gmail.com)
See Introduction to scientific computing with Python:
http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-0-Scientific-Computing-with-Python.ipynb
for more information and instructions for package installation.

If version_information has been installed system wide (as it has been on Bucknell linux computers with shared file systems), continue with next cell as written. If not, comment out top line in next cell and uncomment the second line.

In [12]:
%load_ext version_information
In [13]:
%version_information numpy, scipy
Out[13]:
SoftwareVersion
Python3.7.7 64bit [GCC 7.3.0]
IPython7.16.1
OSLinux 3.10.0 1062.9.1.el7.x86_64 x86_64 with centos 7.7.1908 Core
numpy1.18.5
scipy1.5.2
Wed Aug 05 20:18:56 2020 EDT
In [ ]: