import numpy as np
from scipy import optimize
from scipy import stats
import urllib # for importing from a URL
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
# Following is an Ipython magic command that puts figures in notebook.
%matplotlib notebook
# M.L. modification of matplotlib defaults
# Changes can also be put in matplotlibrc file,
# or effected using mpl.rcParams[]
mpl.style.use('classic')
plt.rc('figure', figsize = (6, 4.5)) # Reduces overall size of figures
plt.rc('axes', labelsize=16, titlesize=14)
plt.rc('figure', autolayout = True) # Adjusts supblot params for new size
def f(x,A,x0,b,c):
'''Simple Gaussian function with amplitude A, center x0, width b and offset c'''
return A*np.exp(-1.0*(x-x0)**2/b) + c
def chi2(x, y, u, A, x0, b, c):
'''Chisquare as a function of data (x, y, and yerr=u), and model
parameters Amplitude A, center x0, width b and offset c'''
return np.sum((y - f(x, A, x0, b, c))**2/u**2)
g = urllib.request.urlopen('https://www.eg.bucknell.edu/~phys310/skills/data_analysis/GaussianData.dat')
data = np.loadtxt(g)
# data = np.loadtxt("GaussianData.dat")
# Format: [[x1,y1,u1], [x2,y2,u2], ... ] where u1 is uncertainty in y1
# data = np.array([[1, 2.947032612427293, 0.5],
# [2, 6.168779380682309, 0.5],
# [3, 7.1618838821688, 0.5],
# [4, 9.590549514954866, 0.5],
# [5, 11.20657, 0.5]])
x, y, u = data.T
xc = np.linspace(0,4,201) # quasi-continuous set of x's for function plot
plt.figure()
plt.title("data",fontsize=14)
plt.xlabel('$x$')
plt.ylabel('$y$')
plt.axhline(0,color='magenta')
plt.xlim(0,4)
plt.errorbar(x,y,yerr=u,fmt='o');
# I am purposefully picking some so-so values because as long as we are
# close, the fitting should be able to make it work.
A = 2.0
x0 = 1.5
b = 0.5
c= 0.5
p0 = A, x0, b, c
plt.figure()
xc = np.linspace(0,4,201)
yc = f(xc, *p0)
plt.plot(xc, yc)
plt.errorbar(x,y,u,fmt='o')
plt.xlabel('$x$')
plt.ylabel('$y$')
plt.title("Preliminary graph with estimated parameters");
popt, pcov = optimize.curve_fit(f, x, y, p0, sigma=u, absolute_sigma=True)
A = popt[0]
x0 = popt[1]
b = popt[2]
c = popt[3]
αA = np.sqrt(pcov[0,0])
αx0 = np.sqrt(pcov[1,1])
αb = np.sqrt(pcov[2,2])
αc = np.sqrt(pcov[3,3])
print("A =", A,"+/-", αA,"\n")
print("x0 =", x0,"+/-", αx0,"\n")
print("b =", b,"+/-", αb,"\n")
print("c =", c,"+/-", αc,"\n")
print("covariance matrix =","\n",pcov,"\n")
pcov_data = pcov
print("chi2 =", chi2(x, y, u,*popt))
# print("reduced chi2 = chi2/(len(x)-len(popt)) =", chi2(x, y, u, *popt)/(len(x)-len(popt)))
a = chi2(x,y,u,*popt)
(Note: I generated this data with A = 2.50, $x_0$ = 1.75, b = 0.27 and c = 0.65, with some additive noise with standard deviation of 0.14, so the fit came up with the "true" parameters within two uncertainties.)
xc = np.linspace(0,4,201) # quasi-continuous set of x's function plot
plt.figure()
plt.title("data with best fit line",fontsize=14)
plt.xlabel('$x$')
plt.ylabel('$y$')
plt.axhline(0, color='magenta')
plt.xlim(0,4) # Pad x-range on plot
plt.errorbar(x, y, yerr=u, fmt='o');
plt.plot(xc ,f(xc, A, x0, b, c));
plt.figure()
plt.axhline(0,color='magenta')
plt.title('normalized residuals')
plt.xlabel('$x$')
plt.ylabel('normalized residuals')
plt.grid(True)
plt.errorbar(x,(f(x,A, x0, b, c)-y)/u,1,fmt='o')
plt.xlim(-0.5,4.5);
The normalized residuals look fine. First, most but not all are between -1 and +1. Second, there are no patterns in the residuals; rather, they are randomly fluctuating between negative and positive.
We have four parameters, so we should plot two at a time. Let's pair up A with c and x0 with b. Start with A and c
AA = np.linspace(2, 3.0, 201)
cc = np.linspace(0, 1, 201)
Z = np.zeros((len(AA),len(cc)))
for i in range(len(AA)):
for j in range(len(cc)):
Z[j,i] = chi2(x, y, u, AA[i], x0, b, cc[j]) - chi2(x, y, u, *popt)
plt.figure()
AA, cc = np.meshgrid(AA, cc)
CS = plt.contour(AA, cc, Z, levels=[1,2,5,10,20,50])
plt.xlabel('$A$')
plt.ylabel('$c$')
plt.grid()
plt.axhline(c)
plt.axvline(A)
plt.clabel(CS, inline=1, fontsize=10);
AA = np.linspace(2.2, 2.6, 201)
cc = np.linspace(0.6, 0.8, 201)
Z = np.zeros((len(AA),len(cc)))
for i in range(len(AA)):
for j in range(len(cc)):
Z[j,i] = chi2(x, y, u, AA[i], x0, b, cc[j]) - chi2(x, y, u, *popt)
plt.figure()
AA, cc = np.meshgrid(AA, cc)
CS = plt.contour(AA, cc, Z, levels=[1])
plt.xlabel('$A$')
plt.ylabel('$c$')
plt.grid()
plt.axhline(c)
plt.axvline(A)
plt.clabel(CS, inline=1, fontsize=10);
x0b = np.linspace(1.5, 2.0, 201)
bb = np.linspace(0.1, 0.5, 201)
Z = np.zeros((len(x0b),len(bb)))
for i in range(len(x0b)):
for j in range(len(bb)):
Z[j,i] = chi2(x, y, u, A, x0b[i], bb[j], c) - chi2(x, y, u, *popt)
plt.figure()
x0b, bb = np.meshgrid(x0b, bb)
CS = plt.contour(x0b, bb, Z, levels=[1,2,5,10,20,50])
plt.xlabel('$x0$')
plt.ylabel('$b$')
plt.grid()
plt.axhline(b)
plt.axvline(x0)
plt.clabel(CS, inline=1, fontsize=10);
x0b = np.linspace(1.7, 1.8, 201)
bb = np.linspace(0.25, 0.35, 201)
Z = np.zeros((len(x0b),len(bb)))
for i in range(len(x0b)):
for j in range(len(bb)):
Z[j,i] = chi2(x, y, u, A, x0b[i], bb[j], c) - chi2(x, y, u, *popt)
plt.figure()
x0b, bb = np.meshgrid(x0b, bb)
CS = plt.contour(x0b, bb, Z, levels=[1])
plt.xlabel('$x0$')
plt.ylabel('$b$')
plt.grid()
plt.axhline(b)
plt.axvline(x0)
plt.clabel(CS, inline=1, fontsize=10);
# I then used the zoom feature, i.e., hold "cntl" key, and right-click and drag to zoom in.
# You could also simply narrow the range to zoom in.