{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Monte Carlo simulation of a simple experiment using `scipy.stats` tools\n", "\n", "Question: I flip a fair coin 100 times. What is the probability that I get 60 or more \"heads\"?\n", "\n", "One way to answer this question is to use the known properties of the binomial distribution (see the end of this notebook), but I want to get the answer by using tools from the `scipy.stats` submodule." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from scipy import stats\n", "\n", "import matplotlib as mpl # As of July 2017 Bucknell computers use v. 2.x \n", "import matplotlib.pyplot as plt\n", "%matplotlib notebook\n", "# As of Aug. 2017 M.L. reverting to 1.x defaults.\n", "# In 2.x text.ustex requires dvipng, texlive-latex-extra, and texlive-fonts-recommended, \n", "# which don't seem to be universal\n", "# See https://stackoverflow.com/questions/38906356/error-running-matplotlib-in-latex-type1cm?\n", "mpl.style.use('classic')\n", " \n", "# M.L. modifications of matplotlib defaults using syntax of v.2.0 \n", "# More info at http://matplotlib.org/2.0.0/users/deflt_style_changes.html\n", "# Changes can also be put in matplotlibrc file, or effected using mpl.rcParams[]\n", "plt.rc('figure', figsize = (6, 4.5)) # Reduces overall size of figures\n", "plt.rc('axes', labelsize=16, titlesize=14)\n", "plt.rc('figure', autolayout = True) # Adjusts supblot parameters for new size" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Simulating spin flips\n", "\n", "I am going to generate 100 random 0's and 1's, and let 1 represent a \"heads\" and 0 represent a \"tails.\"" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0\n", " 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 1\n", " 0 1 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 1]\n" ] } ], "source": [ "n_flips = 100 # Number of spin flips\n", "data = stats.randint.rvs(0, 2, size=n_flips)\n", "print(data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "I can count the \"heads\" by summing the array `data`. " ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "48\n" ] } ], "source": [ "n_heads = np.sum(data)\n", "print(n_heads)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Simulating many trials of 100 spin flips, to see how many times I get 60 or more heads\n", "\n", "Use a variable `counter` to keep track of the number of times I get 60 or more heads." ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2840 0.0284\n" ] } ], "source": [ "n_expts = 100000 # Number of experiments to simulat\n", "\n", "counter = 0\n", "for i in range(n_expts):\n", " if np.sum(stats.randint.rvs(0, 2, size=n_flips)) > 59:\n", " counter += 1\n", "\n", "print(counter, counter/n_expts)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### I get 60 or more heads in about 2.8% of the trials" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Find average number of \"heads\"; should be close to 50" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Using properties of binomial distribution to analyze the same experiment\n", "\n", "The probablity of obtaining 60 or more heads is \n", "\n", "$$1 - \\mbox{probability of obtaining 59 or fewer heads} = 1 - C_{DF}(59)$$ " ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "probability = 0.02844396682049044\n" ] } ], "source": [ "p = 0.5 # probability of getting a \"head\" in a single trial\n", "n = 100 # number of trials\n", "\n", "print(\"probability =\", 1 - stats.binom.cdf(59, n, p))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Agrees with result of Monte Carlo simulation" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 2 }