{ "cells": [ { "cell_type": "markdown", "id": "43f086df", "metadata": {}, "source": [ "# PHYS 310 Class 4 (Data Analysis class number 3)\n", "Skeleton notebook for in-class exercises\n", "\n", "Tom Solomon, Feb 2023" ] }, { "cell_type": "code", "execution_count": null, "id": "5972accc", "metadata": {}, "outputs": [], "source": [ "# First, start with the standard stuff at the top\n", "import numpy as np\n", "from scipy import optimize\n", "import urllib\n", "\n", "import matplotlib as mpl\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": null, "id": "00f416ac", "metadata": {}, "outputs": [], "source": [ "# Following is an Ipython magic command that puts figures in notebook.\n", "%matplotlib notebook \n", " \n", "# M.L. modifications of matplotlib defaults\n", "# Changes can also be put in matplotlibrc file, \n", "# or effected using mpl.rcParams[]\n", "mpl.style.use('classic') \n", "plt.rc('figure', figsize = (6, 4.5)) # Reduces overall size of figures\n", "plt.rc('axes', labelsize=16, titlesize=14)\n", "plt.rc('figure', autolayout = True) # Adjusts supblot params for new size" ] }, { "cell_type": "markdown", "id": "782bf598", "metadata": {}, "source": [ "# Recall from last week: \n", "### Average $\\bar{x} = \\frac{1}{N}\\Sigma_ix_i$\n", "### Weighted average $\\bar{x}_{weighted} = \\frac{\\Sigma_iw_ix_i}{\\Sigma_iw_i}$\n", "### where weights $w_i = \\frac{1}{\\alpha_i^2}$" ] }, { "cell_type": "markdown", "id": "383d7763", "metadata": {}, "source": [ "
\n", "Question: when is it appropriate to average different results (with or without using weights)?\n", "\n", "Let's say, e.g., two different groups measure Plank's constant _h_ from the cut-off wavelength of x-rays emanating from x-ray anodes. Let's say that one group uses a Molybdenum anode and finds results $6.8 \\pm 0.2$, $6.9 \\pm 0.2$, $6.7 \\pm 0.3$ and $7.0 \\pm 0.2$ (all $\\times 10^{-34}$ Js), and another group uses a copper anode and finds results $4.8 \\pm 0.3$, $5.1 \\pm 0.2$, $4.7 \\pm 0.4$ and $4.9 \\pm 0.2$ (also all $\\times 10^{-34}$ Js)." ] }, { "cell_type": "code", "execution_count": null, "id": "d8a1ead9", "metadata": {}, "outputs": [], "source": [ "xvalues = np.array([1,2,3,4,5,6,7,8])\n", "hvalues = np.array([6.8,6.9,6.7,7.0,4.8,5.1,4.7,4.9])\n", "hmean = np.mean(hvalues)" ] }, { "cell_type": "code", "execution_count": null, "id": "8e7a10c8", "metadata": {}, "outputs": [], "source": [ "plt.figure()\n", "plt.scatter(xvalues,hvalues)\n", "plt.axhline(hmean, c='r', label='mean')" ] }, { "cell_type": "markdown", "id": "de9c900d", "metadata": {}, "source": [ "### Question: Does taking the \"mean\" of the data above produce a better estimate of the true value of _h_?" ] }, { "cell_type": "markdown", "id": "4c8cc42c", "metadata": {}, "source": [ "## What if one group measured _h_, all with the same electrode and got the following values?\n", "$6.82 \\pm 0.16$, $6.9 \\pm 0.2$, $4.8 \\pm 0.2$, $5.13 \\pm 0.16$, $6.72 \\pm 0.13$, $4.7 \\pm 0.2$, $4.9 \\pm 0.2$ and $7.0 \\pm 0.4$ (all $\\times 10^{-34}$ Js)?" ] }, { "cell_type": "code", "execution_count": null, "id": "1290981c", "metadata": {}, "outputs": [], "source": [ "xvalues = np.array([1,2,3,4,5,6,7,8])\n", "hvalues = np.array([6.8,6.9,4.8,5.1,6.72,4.7,4.9,7.0])\n", "hmean = np.mean(hvalues)" ] }, { "cell_type": "code", "execution_count": null, "id": "3059a4b0", "metadata": {}, "outputs": [], "source": [ "plt.figure()\n", "plt.scatter(xvalues,hvalues)\n", "plt.axhline(hmean, c='r', label='mean')" ] }, { "cell_type": "markdown", "id": "51032c10", "metadata": {}, "source": [ "### Question: Does taking the \"mean\" of the data above produce a better estimate of the true value of _h_?" ] }, { "cell_type": "code", "execution_count": null, "id": "308de63d", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "0a83653e", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "e8984489", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "7c96dc6c", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "76fccab6", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "200aede5", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "96024a51", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "21501a7d", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "27113853", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "c203db87", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "e5773c95", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "6185998a", "metadata": {}, "source": [ "#### What if we add the error bars to the plot?" ] }, { "cell_type": "code", "execution_count": null, "id": "ceb15fa8", "metadata": {}, "outputs": [], "source": [ "xvalues = np.array([1,2,3,4,5,6,7,8])\n", "hvalues = np.array([6.82,6.9,4.8,5.13,6.72,4.7,4.9,7.0])\n", "alphavalues = np.array([0.16, 0.2, 0.2, 0.16, 0.13, 0.2, 0.2, 0.4])\n", "# In class, add a calculation of weighted mean, call it wmean" ] }, { "cell_type": "code", "execution_count": null, "id": "4d45042f", "metadata": {}, "outputs": [], "source": [ "plt.figure()\n", "plt.errorbar(xvalues,hvalues,alphavalues, fmt = 'ko')\n", "#plt.axhline(wmean, c='r', label='weighted mean') #Uncomment this when you have determined weighted mean\n", "plt.xlabel('experiment number')\n", "plt.xlim(0,9)\n", "plt.ylabel('h ');" ] }, { "cell_type": "markdown", "id": "993536c6", "metadata": {}, "source": [ "Go back two cells, add a line or two to calculate the weighted mean. (Hint: a dot product makes the numerator easy. you can take the dot product of two matrices a and b either with numpy.dot -- i.e., np.dot(a,b) -- or by using the @ sign -- i.e., a @ b.) Then plot the weighted mean on the plot above." ] }, { "cell_type": "code", "execution_count": null, "id": "5b9ca08c", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "4aa486a5", "metadata": {}, "source": [ "Next, plot the residuals $x_i - \\bar{x}$" ] }, { "cell_type": "code", "execution_count": null, "id": "2985beee", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "a38933a2", "metadata": {}, "source": [ "And then plot the normalized residuals ($(x_i - \\bar{x})/\\alpha_i$)" ] }, { "cell_type": "markdown", "id": "aa8495d1", "metadata": {}, "source": [ "Plot residuals, then normalized residuals. Then square the residuals and add them up -- chi-squared." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" } }, "nbformat": 4, "nbformat_minor": 5 }