
Chapter 9

Second Law of
Thermodynamics and
Entropy

In this chapter we will discuss one of the most significant developments in
the history of science — the development of a statistical theory of thermo-
dynamics. Here is the question: if a chunk of ice, or a glass of water, or
an air-filled balloon is composed of 1022 or 1023 molecules, isn’t it neces-
sary to describe the dynamics of each individual molecule? To determine
the force on each molecule and solve Newton’s second law to figure out its
motion? The answer is no, thankfully. Instead, we can treat each of these
molecules as though they are behaving randomly, and recover all the results
of thermodynamics from a probabilistic treatment.

The importance of this statistical approach cannot be overstated. The
idea that we can treat thermodynamic systems probabilistically led to a
revolution in scientific thought that ranks up there with Newton’s develop-
ment of classical physics, Pasteur’s development of germ theory of disease,
Einstein’s theory of relativity, and the development of quantum mechanics
(which you’ll see in PHYS 212).

We will introduce statistical mechanics by revisiting the basic phenomenon
of heat flow, the spontaneous thermal energy transfer from hotter objects to
colder objects. The direction of the heat flow is determined by what is known
as the second law of thermodynamics. We can derive the second law of ther-
modynamics from probability arguments; essentially, thermal energy flow is
dictated by moving from an improbable to a probable situation. Entropy is
introduced as a measure of probability. And along the way to understanding
the second law, we will provide a general definition of temperature.
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Figure 9.1: A hot piece of metal is placed into cold water. Thermal energy is
transferred from the hot metal to the cold water until they are in
thermal equilibrium.

9.1 Heat Flow Revisited

Consider the following process, illustrated in Fig. 9.1: a hot piece of metal is
placed into a container holding cold water. As time passes, thermal energy
flows from the metal to the water, making the metal colder and the water
warmer. Eventually, the two are at the same temperature and no more
thermal energy is transferred. This is heat : the spontaneous thermal energy
transfer due to the temperature difference, as we identified in section 6.10.

In a heat flow scenario, such as this one, the first law of thermodynamics
states that energy is conserved, and so we must have

Δ𝐸therm,water = −Δ𝐸therm,metal. (9.1)

However, energy conservation would be equally well satisfied if the heat
flowed the other way. Imagine putting the hot metal into cold water and
finding that the metal becomes increasingly hotter while the water becomes
increasingly cooler, beginning to freeze. Absurd! This is never observed
to happen. And yet it would be perfectly consistent with the first law of
thermodynamics.

What this process illustrates is that there must be an additional law
of nature involved that determines the direction of heat flow. In a fit of
creativity, physicists decided to call this the second law of thermodynamics.
There are many equivalent ways to state the second law. We will begin with
the Clausius statement of the second law, since it is the most intuitive.

2nd Law of Thermodynamics (Clausius):
Heat cannot flow spontaneously from a material at lower
temperature to a material at higher temperature.
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Let’s examine this. First, note that the law is, at this point, empirical,
which means it is a statement about the observed behavior of nature. The
second law rules out the absurd scenario whereby heat flowed from the cold
water to the hot metal. But, note that the second law makes no statement
about whether the heat will actually flow from the metal to the water.
According to the second law, this heat flow is allowed, but not required.
That is exactly what we want from a general law, since after all the metal
and the water may or may not be thermally coupled.

Temperature plays a crucial role in the second law, since the question
of whether heat is allowed to flow from 𝐴 to 𝐵 or instead from 𝐵 to 𝐴
is answered by the temperatures 𝑇𝐴 and 𝑇𝐵. Temperature plays the role
of nature’s traffic cop, enforcing thermodynamic “one-way streets.”1 The
primary topic of this chapter is the explanation of why temperature plays
this role.

Another interesting aspect of the second law is the phenomenon of irre-
versibility. Many processes in nature are reversible. A movie of the flight
of a ball thrown straight up into the air, turning around and coming back
down, looks the same whether played forward or backward. This is because
Newton’s law are reversible as long as friction is negligible. But once heat
flows from the hot metal to the cold water, it will never spontaneously flow
back again. A movie of the process (with some thermometers used to make
the temperature visible) would look different played backward versus for-
ward. Physicists believe the second law is the origin of any irreversibility
observed in nature, which is to say, the second law of thermodynamics plays
a crucial role in determining the direction of time flow.

Interestingly, the second law is unique among laws of physics. Most laws
are simply inferred from the behavior of nature. We don’t know why energy
conservation happens; we just know it does. The second law is different
because we can essentially derive it. We know why it happens. It is ulti-
mately a statement about probability: thermal energy flows spontaneously
from hotter objects to colder objects because that brings the system to a
state with a more likely arrangement of energy.

The rest of this chapter is concerned with expanding our probabilistic
understanding of the second law and temperature.

9.2 Microstates, Macrostates, and Multiplicity

To explain how probabilities work in thermodynamics — and ultimately to
explain entropy and how it relates to the second law of thermodynamics
— it is necessary to discuss some fundamental concepts of probability. We
start with definitions of microstates and macrostates:

1However, nature needs no traffic court since its one-way streets, like its speed limit,
are self-enforcing.
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A macrostate is a specification of the macroscopic state of the
system. For example, the pressure, temperature, and number of
moles of an ideal gas would specify a macrostate.

A microstate is the detailed specification of the microscopic state
of the system. In the ideal gas example, the microstate would
be precise values for the position and velocity of every single
molecule.

A macrostate can have many microstates associated with it. In the ideal
gas example, there are many possible arrangements of the molecules that
are consistent with having, say, one mole of gas with atmospheric pressure
and room temperature. This brings us to multiplicity:

The multiplicity Ω of a macrostate is the number of microstates
associated with that macrostate.

Let’s explore these ideas with a specific example: a pair of six-sided dice,
one red and one green.2 There are 36 possible outcomes of rolling these dice,
listed in Table 9.1, and the sum of the two dice can be any number between
two and twelve. Not every sum is equally probable, however. If you roll the
dice many times, you will notice you get a sum of seven much more often
than, say, a sum of twelve.

The 36 possible outcomes are the microstates. The red dice showing ‘5’
and the green die showing ‘3’ would be a particular microstate (labeled 5-3 in
Table 9.1). The sum of the dice, eight in this case, represents a macrostate.
Notice that there are many ways to roll a sum of eight; or stated another
way, there are multiple microstates associated with the macrostate ‘8.’ The
number of ways to roll an ‘8’ is the multiplicity Ω. Looking at Table 9.1, we
see there are five different ways to roll an ‘8’, so the multiplicity Ω = 5.

The multiplicity of a macrostate is useful to know because it tells us
the probability of obtaining that particular macrostate. Each of the 36
microstates for a pair of dice is equally likely. The reason that a sum of
seven is a more likely outcome than a sum of twelve is not because 4-3 is
more likely than 6-6 (it’s not!), rather, there are more ways to roll a ‘7.’

Now let’s come back to physics. The macrostate of a collection of
molecules could be defined in terms of the number of particles and the
amount of energy 𝐸therm they have. A microstate would correspond to a
particular arrangement of the energy among the molecules. Since there are
many possible ways to arrange the energy among the molecules, there are
many microstates associated with this macrostate. The number of possible

2Having dice of the same color wouldn’t change anything. We just use different colors
to help label the dice.



9.3. EINSTEIN SOLID 189

sum rolls (red die–green die) Ω probability

2 1-1 1 1/36
3 1-2 2-1 2 2/36 = 1/18
4 1-3 2-2 3-1 3 3/36 = 1/12
5 1-4 2-3 3-2 4-1 4 4/36 = 1/9
6 1-5 2-4 3-3 4-2 5-1 5 5/36
7 1-6 2-5 3-4 4-3 5-2 6-1 6 6/36 = 1/6
8 2-6 3-5 4-4 5-3 6-2 5 5/36
9 3-6 4-5 5-4 6-3 4 4/36 = 1/9
10 4-6 5-5 6-4 3 3/36 = 1/12
11 5-6 6-5 2 2/36 = 1/18
12 6-6 1 1/36

Table 9.1: The 36 possible results from rolling a pair of dice (one red, one green).

ways to arrange the given amount of energy would then be the multiplicity
Ω.

To go from multiplicity to probability we need one more piece of infor-
mation. In the case of the dice, each of the 36 possible outcomes was equally
likely, assuming that the dice were fair, returning each of the six values with
equal probability. Does this apply as well for our system of 𝑁 particles shar-
ing a total energy 𝐸therm? In general, we cannot prove this, but to make
progress we will assume that it is true.

The Fundamental Assumption of Statistical
Mechanics:
All of a system’s accessible microstates are equally likely.

“Accessible microstates” here means simply those which are allowed by
energy conservation. The motivation for this assumption is that whatever
the specific dynamics are, however the molecules are colliding and sloshing
energy back and forth among each other, they eventually visit every possible
state allowed by energy conservation. So a sequence of snapshots of the sys-
tem would look like randomly selected examples of possible microstates. In
the end, nature has confirmed that starting with the fundamental assump-
tion leads to predictions that match experiments extremely well. Now we
shall see what the fundamental assumption buys us.

9.3 Einstein Solid

We now develop the ideas of the previous section in the context of a specific
model. The simplest model to work with, it turns out, is not the ball-
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spring model or the ideal gas, but rather a variation of the ball-spring solid
called the Einstein solid. Experiments on very cold metals showed that their
specific heats could fall well below the value 3𝑅, suggesting something not
contained in the ball-spring model was occurring at low temperatures. Ein-
stein showed that a quantum mechanical version of the ball-spring model
could explain this result.3 To begin, notice that a three-dimensional oscilla-
tor, such as the molecule in the ball-spring model, can be written as a sum
of three independent, one-dimensional oscillators:

𝐸ball =
(︀
1
2𝑚𝑣2𝑥 +

1
2𝑚𝑣2𝑦 +

1
2𝑚𝑣2𝑧

)︀
+
(︀
1
2𝑘𝑠𝑝𝑥

2 + 1
2𝑘𝑠𝑝𝑦

2 + 1
2𝑘𝑠𝑝𝑧

2
)︀

=
(︀
1
2𝑚𝑣2𝑥 +

1
2𝑘𝑠𝑝𝑥

2
)︀
+
(︀
1
2𝑚𝑣2𝑦 +

1
2𝑘𝑠𝑝𝑦

2
)︀
+
(︀
1
2𝑚𝑣2𝑧 +

1
2𝑘𝑠𝑝𝑧

2
)︀

(9.2)

In the second grouping, each term in parentheses is an oscillator moving in
one particular direction and independent of the motion in the other per-
pendicular directions. Thus a set of 𝑁 molecules in the ball-spring model
is equivalent to 3𝑁 one-dimensional oscillators. In what follows we will be
working primarily with the one-dimensional oscillators so we let 𝑁 represent
the number of oscillators instead of the number of molecules. The number
of molecules is then 𝑁/3.

Einstein proposed to treat the one-dimensional oscillators quantum me-
chanically, which should be appropriate when the temperature is low enough.
We will not discuss quantum mechanics here — that is a topic for PHYS
212 — but we will summarize the main results of interest to us. The energy
levels of the quantum harmonic oscillator are not continuous but rather
discrete (or quantized). This is illustrated in Fig. 9.2. At very low ener-
gies we cannot vary the oscillator energy up or down by arbitrarily small
amounts, but rather can only add energy in discrete chunks. Furthermore,
for the quantum harmonic oscillator, these energy levels are equally spaced.
Therefore we can write the energy level of an oscillator as

𝐸osc = 𝐸0 + 𝑛𝜖 where 𝑛 = 0, 1, 2, 3, . . . (9.3)

Here 𝐸0 is the lowest energy level possible, and we may increase the energy
by adding an integer number of “energy units” of size 𝜖.

Now consider a system of two oscillators, with a total energy of three
“energy units.” These oscillators bounce energy back and forth and so one of
the oscillators may have at a given instant anywhere from zero to all three
of the energy units. Let 𝑛1 be the number of energy units that the first
oscillator has, and 𝑛2 the number of energy units for the second oscillator.
Specifying 𝑛1 and 𝑛2 determines a particular microstate. The total energy

3The complete description of very cold metals requires an additional modification,
worked out by a Dutch physicist named Peter Debye. We will not consider the Debye
theory here.
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Figure 9.2: The quantum harmonic oscillator has discrete energy levels, shown as
horizontal lines. The energy difference between successive levels is 𝜖.

of three units implies 𝑛1 + 𝑛2 = 3, so the possible microstates, written as
(𝑛1,𝑛2), are

(3, 0), (2, 1), (1, 2), (0, 3).

Evidently, the multiplicity of the macrostate with two oscillators and a total
of three energy units is Ω = 4. That is, there are four different microstates
with this total energy.

Example 9.1 Three oscillators, two energy units

Write down all the microstates for a system of three oscillators and a
total of two energy units, and determine the multiplicity.

Solution: For microstates written as (𝑛1,𝑛2,𝑛3), we need to have
𝑛1 + 𝑛2 + 𝑛3 = 2, so the possible microstates are

(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1),

and the multiplicity Ω = 6.

It is feasible to determine the multiplicity directly by counting the mi-
crostates when the number of oscillators and energy units is small. But this
becomes unwieldy very quickly as the number of oscillators and energy units
is increased. Fortunately, we can derive the general result for 𝑁 oscillators
and 𝑞 total energy units, which is

Ω =
(𝑞 +𝑁 − 1)!

𝑞! (𝑁 − 1)!
. (9.4)

The factorial function is defined as 𝑛! = 𝑛(𝑛−1)(𝑛−2) · · · 2 ·1. For example,
5! = 5 · 4 · 3 · 2 · 1 = 120. A special case is the factorial of the number zero:
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by definition, 0! = 1. The meaning of 𝑛! is that it is the number of distinct
ways to order 𝑛 objects. The number of ways to order zero objects is taken
to be 1.

Example 9.2 Checking the multiplicity formula.

Verify the Einstein solid multiplicity formula, Eq. (9.4), for the cases
of two oscillators with three energy units and three oscillators with
two energy units.

Solution: For two oscillators and three energy units (𝑁 = 2 and
𝑞 = 3) the multiplicity formula gives

Ω =
(3 + 2− 1)!

3! (2− 1)!
=

4!

3! 1!
=

24

6 · 1 = 4, (9.5)

which matches our result above. For the second case, 𝑁 = 3 and
𝑞 = 2, giving

Ω =
(2 + 3− 1)!

2! (3− 1)!
=

4!

2! 2!
=

24

22
= 6, (9.6)

verifying the second case.

Factorials become very large very quickly. For example, 100! ≈ 10157,
which is an amazingly large number. An Einstein solid with 100 oscillators
and 200 energy units has a multiplicity Ω = 2.8 × 1082. Now you can
appreciate having Eq. (9.4) to work with instead of counting all possible
microstates. And imagine how large the result would be for Avogadro’s
number of oscillators!

9.4 Coupled Einstein Solids

Our original goal was to understand heat flow. That is, why thermal energy
spontaneously goes from hotter objects to colder objects. To that end, we
will now consider two Einstein solids, solid 𝐴 with a number 𝑁𝐴 oscillators
and 𝑞𝐴 energy units, and solid 𝐵 with 𝑁𝐵 oscillators and 𝑞𝐵 energy units.
If solids 𝐴 and 𝐵 are brought into thermal contact, then they will be able
to pass energy units back and forth while maintaining a fixed total 𝑞tot =
𝑞𝐴 + 𝑞𝐵. But which way will the energy go, on average? And when will it
come to thermal equilibrium? Let us try to address these questions.
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𝑞𝐴 𝑞𝐵 Ω𝐴 Ω𝐵 Ω𝐴𝐵

0 6 1 28 28
1 5 3 21 63
2 4 6 15 90
3 3 10 10 100
4 2 15 6 90
5 1 21 3 63
6 0 28 1 28

Table 9.2: Possible macrostates for system 𝐴 and 𝐵 sharing six units of energy,
with 𝑁𝐴 = 3 and 𝑁𝐵 = 3.

Once the two Einstein solids are thermally coupled and exchanging en-
ergy, 𝐴 and 𝐵 should be regarded as subsystems of the combined system.
For a particular division of energy among the two subsystems, we have a
multiplicity Ω𝐴 that depends on 𝑁𝐴 and 𝑞𝐴, and a multiplicity Ω𝐵 that
depends on 𝑁𝐵 and 𝑞𝐵.

How do we calculate the combined multiplicity of the system? If you
have three pairs of pants and five shirts, then you have 3 · 5 = 15 possible
combinations you can make, at least in polite company. Similarly, subsystem
𝐴 may be in any of the number Ω𝐴 microstates and subsystem 𝐵 in any
of Ω𝐵 microstates, so the number of paired microstates we can make is the
product Ω𝐴𝐵 = Ω𝐴Ω𝐵. This is the combined multiplicity of the system.

Let’s consider a specific case. Let 𝑁𝐴 = 3 and 𝑁𝐵 = 3, and 𝑞tot =
𝑞𝐴 + 𝑞𝐵 = 6. The two systems may divide up the six energy units a variety
of ways, as shown in Table 9.2. For each choice, the multiplicities Ω𝐴 and Ω𝐵

and the combined multiplicity Ω𝐴𝐵 are given. Note that the most probable
arrangement of energy, the one with the largest multiplicity, is the one with
three energy units in each subsystem. If subsystem 𝐴 started with zero
energy units and subsystem 𝐵 with six units, then simple random energy
exchanges would move the coupled systems toward the more probable state
with 𝑞𝐴 = 𝑞𝐵 = 3. This is a clue about the origin of the second law.

From Table 9.2 we see that the most probable situation is only slightly
more probable than the other possibilities. This changes dramatically as the
system size is increased. In Fig. 9.3 we plot the combined multiplicity as a
function of 𝑞𝐴 for various numbers of oscillators and energy units. As the fig-
ure shows, when the numbers become larger, say in the thousands, the multi-
plicity function becomes sharply peaked. Some particular division of energy
between the two subsystems is vastly, hugely, awesomely, mind-bogglingly
more probable4 than all others. This we identify as the equilibrium division
of energy. Now imagine what occurs when you approach Avogadro’s number

4I.e., it isn’t just a little more probable, it is a lot more probable.
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Figure 9.3: Plots of the multiplicity as a function of 𝑞𝐴 for a variety of system
sizes. Note that 𝑞𝐵 is determined by 𝑞𝐴 + 𝑞𝐵 = 𝑞tot.

of energy units. The multiplicity function becomes completely sharp. There
is some particular division of the energy between subsystems 𝐴 and 𝐵 that
is ridiculously, overwhelmingly, staggeringly5 more probable than any other.

Now we have the probabilistic origin of the second law. Subsystems
𝐴 and 𝐵, before they are thermally coupled, can be prepared with any
thermal energy we would like. We made the metal object hot and the water
cold before plunging the metal into the water. But once the subsystems
are thermally coupled, they will move from whatever division of energy
they started with toward the maximally probable arrangement of energy for
the coupled system. They are irresistibly led to it by essentially random
exchanges of energy between the subsystems. The energy transferred along
the way is what we had previously identified as heat.

To summarize:

The second law of thermodynamics is a result of a system pre-
pared in an improbable initial state then moving to a vastly more
probable final state.

5“. . . vastly, hugely, awesomely, mind-bogglingly, ...” and that doesn’t even begin to
cover it!
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This is an incredibly important result!!!! With this statement, we
don’t have to worry at all about the detailed, Newtonian mechanics of the
(many, many) individual molecules or atoms in a solid, liquid or gas. We
treat all the motion as though it is random and then simply figure out the
probabilities.

9.5 Entropy

Entropy is part of the title of the chapter; perhaps it is time we introduced
it. The fact is, we have already been discussing the entropy, because entropy
is simply the multiplicity cast into a more convenient form, by means of a
logarithm. We define entropy as

𝑆 = 𝑘𝐵 lnΩ. (9.7)

The factor of Boltzmann’s constant plays little role here, apart from giving
entropy units (which are J/K).6 The logarithm is a monotonic function,
which means that the larger Ω gets, the larger 𝑆 gets. So being the most
probable state is the same as being the highest entropy state. This is a really
important statement, so important that we will elevate it to box-dom:

Entropy is a measure of probability: the more probable a state,
the higher its entropy.

Entropy is often incorrectly described as a measure of the disorder of a
system. This is simply not true; entropy is measure of probability and prob-
ability only. It is true that higher entropy states are often more disordered
than lower-entropy states, but this is not always true; there are many ex-
amples of systems that become more ordered as their entropy increases.

We can now write the second law of thermodynamics rather concisely as
a statement of probability, given in the boxed statement at the end of the
previous section:

Δ𝑆total ≥ 0. (Entropic version of 2nd law) (9.8)

Starting from some initial state that is not the maximum entropy state,
the combination of all our subsystems will exchange thermal energy and
move spontaneously toward the maximum entropy state. And for large
systems, it moves irreversibly: there is a negligibly small probability of
moving away from the maximum entropy state (think about the sharply
peaked multiplicity).

6By the way, Boltzmann was the one who realized that the second law had a proba-
bilistic origin, and Eq. (9.7) is engraved on his tombstone. Check it out if you’re ever in
Vienna.
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Note that the entropic form of the second law refers to the total entropy
of a system, i.e., the total entropy cannot decrease. But the entropy of part
of a system can decrease. So, for instance, it is very possible to have a
chemical reaction where the stuff inside your beaker ends up with a lower
entropy, as long as there is a corresponding increase in entropy somewhere
else (most likely in the air around the beaker whose entropy increases when
heated up by heat flowing from the beaker).

We could have expressed all this with the multiplicity, so why take a
logarithm and call it entropy? There are three reasons. First, since multi-
plicities become very, very large for even modest sized systems, we find more
workable expressions if we use the logarithm. For example, in the previous
case of 100 oscillators with 200 energy units, we get an entropy of

𝑆/𝑘𝐵 = lnΩ = ln

(︂
299!

200! 99!

)︂
= 190, (9.9)

which is much nicer to manipulate and plot than 1082.

The second reason is that the combined entropy of two systems is simply
the sum,

𝑆𝐴𝐵 = 𝑆𝐴 + 𝑆𝐵, (9.10)

which you will show in Problem 14. When we are trying to identify the
maximum entropy state, we can combine the contributions 𝑆𝐴 and 𝑆𝐵 from
subsystems 𝐴 and 𝐵 by simply adding them together (like we would for
energies). That will turn out to be handy now as we finally come to the
definition of temperature.

The third reason is historical: it so happens that entropy was defined
by Clausius a few years before Boltzmann developed a probabilistic theory
for thermodynamics. Clausius defined the quantity that he called entropy7

in terms of energy flow in a thermodynamical system (to be discussed in
the next chapter). He even stated the entropic form of the second law of
thermodynamics, though no one at the time understood that this is really
a statement of probability. So, taking the logarithm of multiplicity was
needed to keep the entropic statement of the second law consistent with
that proposed by Clausius.

9.6 The Definition of Temperature

As we discussed in Chapter 6, temperature is often defined in terms of the
thermal kinetic energy. Certainly thermal kinetic energy and temperature
are related, via the equipartition theorem, so it is a useful and convenient

7Clausius chose the word entropy partially after the Greek word trope which means
transformation and partially because he wanted a word that sounded similar to energy
since he defined entropy in terms of an energy flow.
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Figure 9.4: Entropy as a function of thermal energy.

picture to have. But defining temperature this way leaves its most funda-
mental role — namely, that it is the traffic cop dictating which way thermal
energy will spontaneously flow — completely unexplained. In this section
we will introduce a definition of temperature that naturally explains its pres-
ence in the Clausius statement of the second law. Conveniently, this second
law temperature turns out to be the same temperature we know and love
from the ideal gas law, the equipartition theorem, and the ball-spring solid.

Let’s think of the entropy of a system as a function of its thermal energy.
Adding more thermal energy to a system gives more ways to distribute the
energy, and so increases the multiplicity. This means an increase in entropy,
so 𝑆 should be an increasing function of 𝐸therm. A typical dependence of
entropy on 𝐸therm is shown in Fig. 9.4. Note that the entropy is increasing
with 𝐸therm, but also note that the rate of increase slows down with increas-
ing energy. That is, the slope is steadily decreasing as 𝐸therm increases. This
can be understood as a type of diminishing returns: systems with very low
𝐸therm can gain a lot of multiplicity by adding energy. Once the thermal
energy is high, additional thermal energy has less impact on the entropy.

Now let’s couple two subsystems, 𝐴 and 𝐵. The combined energy is
fixed, 𝐸total = 𝐸𝐴 + 𝐸𝐵. Consequently, as system 𝐴 gains energy, system
𝐵 loses energy, and vice-versa. In Fig. 9.5 we plot both 𝑆𝐴 and 𝑆𝐵, but
notice that the 𝑆𝐵 curve is flipped over left to right. This is because 𝐸𝐵 = 0
occurs at the right side of the plot, where 𝐸𝐴 is at its maximum, and 𝐸𝐵

increases as you move to the left. The reason for plotting it this way is that
we can, for a particular choice of 𝐸𝐴, read off both 𝑆𝐴(𝐸𝐴) and 𝑆𝐵(𝐸𝐵).
Also shown on the plot is the combined entropy 𝑆total = 𝑆𝐴 + 𝑆𝐵.

Now imagine starting with a relatively small value of 𝐸𝐴, where the
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Figure 9.5: Entropies of subsystems 𝐴 and 𝐵, as well as the combined system
entropy 𝑆total, all plotted versus 𝐸𝐴.

heavy lines are drawn on the left. What would be the net effect on the
entropy if we were to take some energy from system 𝐵 and give it system
𝐴? The plot shows that 𝑆𝐵 would decrease and 𝑆𝐴 would increase. The
plot also shows that, since the 𝑆𝐴 curve in this region is steeper than the
𝑆𝐵 curve, system 𝐴 would gain more entropy than system 𝐵 would lose.
In other words, 𝑆total would increase. Therefore, the “force” of probability
pushing towards a (vastly) more probable state dictates that energy flows
from system 𝐵 to system 𝐴.

What the previous analysis should make clear is that the question of
which way the energy will flow is determined by the magnitude of the slope
on an entropy versus energy graph. Whichever system, 𝐴 or 𝐵, has the
steeper slope will be the one to receive the energy.

Let’s carry this analysis further. After some energy has flowed from 𝐴 to
𝐵, we find that 𝐸𝐴 has increased to where the second set of heavy lines are
drawn. Here, the slopes of the 𝑆𝐴 and 𝑆𝐵 curves are equal in magnitude and
opposite in sign. Any entropy change of system 𝐴 is canceled by the entropy
change of system 𝐵, so there is no longer entropy gained by increasing 𝐸𝐴

(or decreasing it). Thermal energy will no longer be transferred because we
are at the maximum combined entropy, which can be seen from the plot of
𝑆total, and we have reached thermal equilibrium. Any additional transfer of
energy (in either direction) will result in a decrease in total entropy.

All this discussion leads to the notion that the slope 𝑑𝑆/𝑑𝐸therm is direct-
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ing the thermal energy traffic. Whichever subsystem has the smaller slope
will give up energy to the subsystem which has the larger slope. Hence, we
define temperature as

1

𝑇
≡ 𝑑𝑆

𝑑𝐸therm
, (9.11)

and our probability analysis becomes equivalent to the Clausius statement.
This definition, then, explains the role of temperature in the second law,

but does it match our previous notions of temperature? And what does it
mean intuitively? First, yes, it does match the ideal gas temperature, etc.
This can be shown by deriving the equipartition theorem from this definition
of temperature; all our previous uses for temperature (such as the ideal gas)
had their origin in the equipartition theorem.

As for an intuitive meaning, think of it this way: inverse temperature
(that is, 1/𝑇 ) is a measure of how much use a system has for energy. When a
system can find many ways to divide up the energy, then adding some energy
will increase 𝑆 a lot. That is a low temperature system. A high temperature
system is one where diminishing returns has set in, and additional energy
does not result in a substantial entropy increase.

Finally, note that for large systems we can add some amount of en-
ergy without significantly changing the temperature (for example, adding
10 joules of thermal energy to a cup of water). In this case, we can approx-
imate Eq. (9.11) as

1

𝑇
≈ Δ𝑆

Δ𝐸therm
or 𝑇 ≈ Δ𝐸therm

Δ𝑆
. (9.12)

This is often a handy way to estimate temperature from entropy change
or vice-versa. IMPORTANT NOTE: use Eq. (9.12) only if Δ𝑆 and
Δ𝐸𝑡ℎ𝑒𝑟𝑚 are small. If you are given the entropy 𝑆 as a function of 𝐸𝑡ℎ𝑒𝑟𝑚,
you should be using Eq. (9.11).

Example 9.3 The Temperature of my Coffee

Adding 50 J of thermal energy to my coffee cup caused its entropy to
increase by an amount of 0.17 J/K. Estimate the temperature of my
coffee.

Solution: According to Eq. (9.12) we have

𝑇 ≈ Δ𝐸therm

Δ𝑆
=

50 J

0.17 J/K
= 294K. (9.13)

That’s room temperature. Yuck!
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Problems

1. Consider an Einstein solid with three oscillators and four units of energy.

(a) Calculate the multiplicity for this macrostate.

(b) Write out the triplet for each possible microstate. For example, the
microstate where the first oscillator has all the units of energy can
be written as (4, 0, 0). Confirm that you find the correct number of
microstates.

2. Calculate the multiplicity of an Einstein solid with 24 oscillators and 15
energy units.

3. Suppose you roll a fair six-sided die three times in a row.

(a) Determine the probability of getting exactly the sequence 1–3–2?

(b) Now determine the probability of getting any other particular se-
quence (hint: no calculation necessary).

(c) What is the probability of rolling a sum of 6?

4. For two Einstein solids with 𝑁𝐴 = 3 and 𝑁𝐵 = 3 and six energy units,
how many times more probable is the macrostate with equally shared
energy than the macrostate where system 𝐴 has all the energy? Use
Table 9.2.

5. Is it really true that the entropy of an isolated system consisting of two
Einstein solids never decreases? Consider a pair of very small solids.
Explain why this statement is more accurate for large systems than for
small systems.

6. A large object’s entropy is observed to increase by 0.15 J/K when we add
45 J of thermal energy. Assume that this causes a negligible increase in
the temperature of the object. Determine the approximate temperature
of the object.

7. The idea of “diminishing returns” says that while the entropy does
increase with increasing thermal energy, the slope is decreasing (see
Fig. 9.4). The Einstein solid multiplicity, like most materials, shows
this behavior. Here is how to see it:

(a) For an Einstein solid with 10 oscillators and 5 energy units, calculate
how much the entropy increases, i.e. Δ𝑆, if you add one more energy
unit (you may leave your answer in terms of 𝑘𝐵).



PROBLEMS 201

(b) Now consider an Einstein solid with 10 oscillators and 15 energy
units, and calculate how much the entropy increases if you add one
more energy unit.

(c) Do your answers to (a) and (b) confirm the diminishing returns?
Explain why.

8. For two Einstein solids 𝐴 and 𝐵, the entropy as a function of thermal
energy is given by

𝑆𝐴 = 𝑘𝐵 400 ln(𝐸𝐴/300) 𝑆𝐵 = 𝑘𝐵 100 ln(𝐸𝐵/800)

where 𝐸𝐴 and 𝐸𝐵 are the thermal energies of systems 𝐴 and 𝐵. If the
two solids are brought to thermal equilibrium, what relation, if any, can
be made between the final energies 𝐸𝐴,𝑓 and 𝐸𝐵,𝑓?

9. Consider a very strange system whose multiplicity is Ω𝐴 = 1 regardless
of how much energy it has. Imagine starting this system with some
amount of energy and bringing it into thermal contact with system 𝐵,
an Einstein solid.

(a) In which direction will the energy flow, or will no energy flow?

(b) What can you say about the energies of the final state? For example,
will they be equal? If they are unequal, which is larger? Is there
anything more you can conclude?

10. A substance has entropy 𝑆 = 𝑐
√
𝐸therm, where 𝑐 is some constant. Use

the definition of temperature to find 𝐸therm as a function of 𝑇 .

11. Consider two Einstein solids with 𝑁𝐴 = 3 and 𝑁𝐵 = 3 and eight energy
units.

(a) Make a table like Table 9.2. Note that many of the multiplicities you
will need are already in Table 9.2, so there is no need to re-calculate
everything.

(b) How many times more probable is the macrostate with equally
shared energy than the macrostate where system 𝐴 has all the en-
ergy?

12. An Einstein solid has four oscillators and three units of energy.

(a) Calculate the multiplicity of the solid.

(b) Identify all the possible microstates using the parenthesis notation
of Example 1.



202 CHAPTER 9. SECOND LAW AND ENTROPY

13. System 𝐴 and system 𝐵 are both large. For system 𝐴, adding 250 J of
thermal energy causes an entropy increase of 0.80 J/K. For system 𝐵,
adding 250 J of thermal energy causes an entropy increase of 0.60 J/K.

(a) Without mentioning temperature, use probability arguments to de-
termine which way thermal energy will flow when systems 𝐴 and 𝐵
are thermally coupled.

(b) Estimate the temperature of each object and check that your result
is consistent with part (a).

14. Show that 𝑆𝐴𝐵 = 𝑆𝐴 + 𝑆𝐵 follows from the definition of entropy.

15. Entropy applies to more than just heat flow. We can use entropy and
the second law of thermodynamics to discuss movement of air in a room.

(a) Consider a room with only 100 gas molecules. Theoretically, the
gas molecules can move anywhere in the room. Calculate the prob-
ability that all 100 of the molecules will be found on one particular
side of the room.

(b) Now, consider a real room with a realistic amount of gas in it –
let’s say that there are 1026 gas molecules in the room. Calculate
the probability that all of these gas molecules will be found in one
particular side of the room. (Note: the probability is so small that
your calculator or computer might simply give “0” for the answer.)

(c) Is it reasonable to say that you will “never” find all the air in one
side of the room?

(d) Now, write a couple of sentences explaining why it is (from a prob-
ability perspective) that when a perfume bottle is opened, the scent
of the perfume will spread throughout the room.

(e) After the perfume smell has spread throughout the room, would
you expect all of the perfume molecules to go back into the bottle?
Discuss this using the entropic form of the second law of thermo-
dynamics.
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16. The graphs in the figure below give plots of entropy 𝑆 vs. 𝐸therm for
two different solids, A and B. Solid A starts with indicated energy 𝐸𝐴

and entropy 𝑆𝐴, and Solid B starts with 𝐸𝐵 and 𝑆𝐵. When Solid A
has energy 𝐸𝐴, the slope of the entropy vs. energy curve is 𝑑𝑆𝐴/𝑑𝐸 =
0.2K−1, and when Solid B has energy 𝐸𝐵, the slope of the entropy vs.
energy curve is 𝑑𝑆𝐵/𝑑𝐸 = 0.4K−1.
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Figure 9.6: Figure for Problem 16

The two solids are brought into thermal contact with each other so that
energy can flow between them.

(a) Which way will the energy flow: from A to B, from B to A, or will
no energy flow? Give qualitative reasoning to support your answer.

(b) Now let’s get quantitative. Calculate the approximate entropy
changes Δ𝑆𝐴 and Δ𝑆𝐵, and Δ𝑆total if 3 J of energy flow between
the two solids in the direction that you chose in part (a).

(c) By what factor has the multiplicity for the total system increased
from this energy transfer? In other words, calculate the ratio of
multiplicities Ωafter/Ωbefore.

Note: The answer you get will be a ridiculously, mind-boggling,
impossible-to-put-into-words-just-how-huge-it-really-is number that
you will not be able to calculate — you’ll have to express it as
𝑒something really big. To give you and idea of just how large this num-
ber is, if you were to write it as a digit followed by a bunch of zeros,
and if each digit were 5mm wide, the number would fill up several
light years.

(d) Explain in your own words why heat flows in this system when the
two solids are brought into contact. Don’t use the words “entropy”
or “second law” but rather explain it based on probabilities.
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17. The graphs in the figure below give plots of entropy 𝑆 vs. 𝐸therm for
two different solids, A and B. Solid A starts with indicated energy 𝐸𝐴

and entropy 𝑆𝐴, and Solid B starts with 𝐸𝐵 and 𝑆𝐵. When Solid A
has energy 𝐸𝐴, the slope of the entropy vs. energy curve is 𝑑𝑆𝐴/𝑑𝐸 =
0.5K−1, and when Solid B has energy 𝐸𝐵, the slope of the entropy vs.
energy curve is 𝑑𝑆𝐵/𝑑𝐸 = 0.1K−1.
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Figure 9.7: Figure for Problem 17

The two solids are brought into thermal contact with each other so that
energy can flow between them.

(a) Which way will the energy flow: from A to B, from B to A, or will
no energy flow? Give qualitative reasoning to support your answer.

(b) Now let’s get quantitative. Calculate the approximate entropy
changes Δ𝑆𝐴 and Δ𝑆𝐵, and Δ𝑆total if 2 J of energy flow between
the two solids in the direction that you chose in part (a).

(c) By what factor has the multiplicity for the total system increased
from this energy transfer? In other words, calculate the ratio of
multiplicities Ωafter/Ωbefore.

Note: The answer you get will be a ridiculously, mind-boggling,
impossible-to-put-into-words-just-how-huge-it-really-is number that
you will not be able to calculate — you’ll have to express it as
𝑒something really big. To give you and idea of just how large this num-
ber is, if you were to write it as a digit followed by a bunch of zeros,
and if each digit were 5mm wide, the number would fill up several
light years.

(d) Explain in your own words why heat flows in this system when the
two solids are brought into contact. Don’t use the words “entropy”
or “second law” but rather explain it based on probabilities.
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18. System A and System B are brought into thermal contact when the
energy in A is 𝐸𝐴 = 1000 J and the energy in B is 𝐸𝐵 = 1100 J. Using
the table below, listing energies and corresponding entropies of the two
systems, determine whether heat will flow from A to B, or from B to A.
Show all your work.

E𝐴 (J) E𝐵 (J) S𝐴 (J/K) S𝐵 (J/K)

950 1150 6.76 10.34

975 1125 6.84 10.21

1000 1100 6.93 10.08

1025 1075 7.02 9.95

1050 1050 7.10 9.82
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