
Chapter 1

Solving Equations of Motion
Using Numerical Iteration

1.1 Introduction

The past few decades have witnessed a massive revolution in the way people
live and work, due in great part to significant enhancements in computa-
tional power. Computers are everywhere these days in society, not just on
your desktop (or on your lap) but also in your pockets (MP3 players and cell
phones), in your kitchens (ranges, dishwashers and microwave ovens), and
behind the scenes monitoring the money in your bank accounts, your class
schedules and grades, and your music preferences at on-line music stores.

The significant enhancement in computation power has also dramati-
cally changed all fields of science and engineering. Despite our brilliant
teaching of physics in this course, there are many problems in physics and
engineering that you simply will not be able to solve analytically.1 Some
problems simply don’t allow a closed-form solution. But it is even more
severe than that. There are a wide variety of physical systems whose equa-
tions of motion can’t be solved, no matter how brilliant or persistent the
scientist/mathematician. In fact, many real systems are “chaotic,” with sur-
prisingly complicated behavior arising from seemingly simple systems. In
cases where an analytical solution is unavailable, the only option is to solve
the problem numerically, using a computer to simulate the behavior.

Computer simulations have become among the most important tech-
niques in science and engineering. Many of you will use numerical techniques
in your career, whether you are simulating the behavior of a new passenger
airline that you are designing, calculating the forces acting on an artificial
joint that you are designing for a patient, or predicting the effects of a
disruption in Middle East oil supply on the global economy. Numerical sim-

1By “analytically” we mean using the tools from mathematics to determine a written
solution in the form of an equation that can be used to describe the behavior of the system.
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ulations also play a significant role in basic scientific research, enabling us to
explore the behavior of a system that is too complicated to solve analytically
and too difficult to explore experimentally. In fact, numerical simulations
are so common now that they are often considered to be a third branch in
scientific analysis, separate from (and complementary to) experimental and
theoretical science.

The basic idea of numerical simulations is actually quite easy. In this
chapter, we introduce an important technique referred to as iteration where
we break the dynamics of the system into a series of discrete time steps. So,
for example, instead of representing the motion of a ball with a continuous
equation, we instead note the location of the ball, say, every tenth of a
second. Given the location and velocity of the ball at a particular moment in
time, we can predict its location 0.1 s later by using a very simple numerical
techniques referred to as the Euler Method, a technique that conceptually is
nothing more than a simple application of the common “distance = speed
× time” approach. Despite the simplicity of the Euler method, it is a very
powerful method that is used in many numerical applications. This chapter
introduces the basic ideas (with some homework problems); you will use
the method in lab to simulate the motion of a falling object subject to air
resistance.

1.2 Solving Newton’s second law analytically

Newton’s second law 𝐹net = 𝑚�⃗� is a differential equation, i.e., an equation
that can be written in terms of derivatives of various quantities. Ideally,
we would like to “solve” this differential equation to determine expressions
(as a function of time) for the velocity and position of a particle moving
under the influence of the forces. If the forces exerted on the particle are all
known, then Newton’s second law can be rewritten in one-dimension as

𝑎𝑥 =
𝑑2𝑥

𝑑𝑡2
=

𝐹net,𝑥

𝑚
, (1.1)

where the forces are assumed to be possibly functions of position and ve-
locity. Eq. (1.1) written in that form is known as the equation of motion
for the system under consideration. Mathematically one would proceed by
integrating Eq. (1.1) to determine the velocity as a function of time 𝑣𝑥(𝑡)
and then integrating once again to obtain the position as a function of time
𝑥(𝑡). For example we have learned that for a particle falling from rest from
a height 𝑥0 under the force of gravity 𝐹net = 𝑚𝑔, Eq. (1.1) becomes

𝑑2𝑥

𝑑𝑡2
= −𝑔, (1.2)
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and integrating we obtain the following expressions for the velocity and
position:

𝑣𝑥(𝑡) = −𝑔𝑡 and 𝑥(𝑡) = 𝑥0 −
1

2
𝑔𝑡2. (1.3)

If you don’t understand how we got these expressions, then take the deriva-
tive with respect to time of 𝑥(𝑡) to get 𝑣𝑥(𝑡) and then 𝑣𝑥(𝑡) to get back to
Eq. (1.2).

For the example shown above as well as a few other cases, the equation
of motion is relatively straightforward to integrate to get the analytical
functions for velocity and position. As discussed in the previous section,
though, there are many cases where the equations of motion are not so easy
to integrate and other means are necessary for determining the position and
velocity of the particle as a function of time.

In the following sections we will develop a set of equations that we can
use to calculate the position and velocity of a particle at specified time incre-
ments Δ𝑡, a technique called numerical iteration. Although this technique
does not give us as a final result a neat, compact formula for the position
and velocity of the particle into which any value of time can be inserted,
it does allow us to map out the position and velocity of the particle for an
otherwise mathematically intractable problem.

1.3 Numerical Stepping Equations

Let us incorporate the ideas mentioned above into a set of formulas that we
(or better yet, a computer) could use to calculate the position and velocity
of a particle moving under the influence of some forces. Call the present
time 𝑡 and the time a little later 𝑡+Δ𝑡. Let 𝑥(𝑡) denote the position of the
particle now, then 𝑥(𝑡+Δ𝑡) denotes the position of the particle a short time
later. Similarly 𝑣𝑥(𝑡) and 𝑣𝑥(𝑡+Δ𝑡) represent the present and slightly later
velocities of the particle. In all of these expressions, note that 𝑥(𝑡 + Δ𝑡)
does not mean the quantity ‘𝑥’ times the quantity ‘𝑡+Δ𝑡’ but rather means
the value of the function 𝑥 evaluated at the time 𝑡 +Δ𝑡. This is standard
functional notation used in mathematics.

Recall the definition of velocity as the rate of change of the position. Tak-
ing Δ𝑡 to be very small in magnitude, we may approximate this as “velocity
= displacement/time” and express the velocity at time 𝑡 approximately as

𝑣𝑥(𝑡) ≃
Δ𝑥

Δ𝑡
=

𝑥(𝑡+Δ𝑡)− 𝑥(𝑡)

Δ𝑡
. (1.4)

As you recall, Δ𝑥/Δ𝑡 is the definition of the average velocity, while the
instantaneous velocity is actually the derivative of the position with respect
to time. However, for small enough time steps, the average velocity is an
excellent approximation for the instantaneous velocity.
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Turning the previous expression around, we can write an expression for
the position of the particle at time 𝑡+Δ𝑡 in terms of the position and velocity
at time 𝑡:

𝑥(𝑡+Δ𝑡) = 𝑥(𝑡) + 𝑣𝑥(𝑡)Δ𝑡. (1.5)

Eq. (1.5) says that the position at time 𝑡 + Δ𝑡 is the position at time
𝑡 plus the distance traveled 𝑣𝑥(𝑡)Δ𝑡 by the particle during the short time
interval Δ𝑡. Notice that this result is only approximate because the velocity
𝑣𝑥 at time 𝑡 is not necessarily equal to the average velocity during the entire
time interval. However, if Δ𝑡 is small enough, the approximation should be
quite good.

Next we need an expression for incrementing the velocity. By analogy
with the arguments leading up to Eq. (1.5), we can write

𝑣𝑥(𝑡+Δ𝑡) = 𝑣𝑥(𝑡) + 𝑎𝑥(𝑡)Δ𝑡. (1.6)

The three equations (1.1), (1.5) and (1.6) can now be incorporated into a
looping procedure in a computer program. These three equations constitute
what is generally referred to as Euler’s method of numerical approximation.
Given an initial position and velocity, we calculate the initial acceleration
from Eq. (1.1). Then we calculate the position and velocity a short time
later from Eqs. (1.5) and (1.6). Then we repeat the process, pretending
that the new values for 𝑥 and 𝑣𝑥 are the initial values. In this way we can
numerically iterate the motion of the particle from instant to instant as far
into the future as we care to. A spread-sheet program, such as EXCEL, can
perform such calculations with very little “programming” required on your
part.

A note about numerical errors is worth mentioning. Remember that
although Eq. (1.1) is exact, Eqs. (1.5) and (1.6) that update 𝑥 and 𝑣𝑥 to later
times are approximations that are best when Δ𝑡 is small. If the calculations
start going haywire, we can help the situation by choosing smaller steps.
This means of course that the computer will have to run longer, but that’s
frequently not a serious problem.

1.4 Numerical Solution for a Mass on a Spring

Let’s apply this new method to a system we will be studying more in depth
later in this course. The system is a mass which moves under the influence of
a force exerted on it by a spring. The spring is a device which exerts a force
which is proportional to the displacement of the mass from an equilibrium
position. Taking the equilibrium position to be 𝑥 = 0, this implies that
the acceleration of the mass is directly proportional to the position 𝑥(𝑡).
Suppose in our particular system the acceleration is given by

𝑎𝑥(𝑡) = −2.00𝑥(𝑡). (1.7)
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The minus sign in this expression tells us that the force is always opposite
to the displacement. We’ll also assume that time is in seconds, position is
in meters, velocity is in meters per second, and acceleration is in meters per
second squared

To proceed, we choose time steps of size Δ𝑡 = 0.10 s and start the
clock at 𝑡 = 0. We could pick any initial position and velocity; let’s choose
to release the mass from rest at a position 0.30 m from equilibrium, i.e.
𝑥(0) = 0.30 m and 𝑣𝑥(0) = 0. Let’s walk through the first few steps and
then show some results from a computer spreadsheet.

For our example Eqs. (1.1), (1.5) and (1.6) are written as

𝑎𝑥(𝑡) = −2.00𝑥(𝑡) (1.8)

𝑥(𝑡+ 0.10) = 𝑥(𝑡) + 0.10 𝑣𝑥(𝑡) (1.9)

𝑣𝑥(𝑡+ 0.10) = 𝑣𝑥(𝑡) + 0.10 𝑎𝑥(𝑡). (1.10)

First calculate the initial acceleration by setting 𝑡 = 0 in Eq. (1.8) to find

𝑎𝑥(0) = −2.00𝑥(0) = −2.00× 0.30 = −0.60. (1.11)

Then update 𝑥(𝑡) and 𝑣𝑥(𝑡) by setting 𝑡 = 0 in Eqs. (1.9) and (1.10):

𝑥(0.10) = 𝑥(0) + 0.10 𝑣𝑥(0) = 0.30 + 0.10× 0 = 0.30 (1.12)

𝑣𝑥(0.10) = 𝑣𝑥(0) + 0.10 𝑎𝑥(0) = 0 + 0.10× (−0.60) = −0.06. (1.13)

Since the mass was initially at rest, a short time later it is still approximately
at the same location. However, since the spring is stretched at 𝑡 = 0, a force
is acting on the mass immediately, so that a short time later it has already
acquired a non-zero velocity.

How would you find 𝑥(0.20) and 𝑣𝑥(0.20)? Again use Eqs. (1.8) through
(1.10), this time with the ‘present time’ 𝑡 = 0.10. We find that

𝑎𝑥(0.10) = −2.00𝑥(0.10) = −2.00× 0.30 = −0.60 (1.14)

𝑥(0.20) = 𝑥(0.10) + 0.10 𝑣𝑥(0.10)

= 0.30 + 0.10× (−0.06)

= 0.294 (1.15)

𝑣𝑥(0.20) = 𝑣𝑥(0.10) + 0.10 𝑎𝑥(0.10)

= −0.06 + 0.10× (−0.60)

= −0.12. (1.16)

We can continue this process as long as we like. You will find it convenient
to organize the information for the position, velocity and acceleration for
each time in the form of a table. Table 1.1 on the next page lists 𝑡, 𝑥, 𝑣𝑥
and 𝑎𝑥 for the motion of this mass. Note that the periodic nature of the
motion is manifested in the entries of the table.
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There is an unsettling aspect of the entries in Table 1.1. We started at
𝑥 = 0.30m, but at 𝑡 = 2.30 s the position of the mass is 𝑥 = −0.375m, and
further down in the table we find that at 𝑡 = 4.5 s, 𝑥 = 0.468m. What
should we have expected? If we had a real mass connected to a spring
and set it oscillating we would expect the amplitude of the oscillations to
gradually decrease because of the presence of dissipative forces (air resis-
tance and the imperfect elasticity of the spring). In an ideal case, with no
dissipative effects, we would expect there to be no increase or decrease in
the amplitude; that is, the mass should oscillate between 𝑥 = +0.30m and
𝑥 = −0.30m. But this is not the case if we look at the data in Table 1.1.
The problem is that we used too large a time increment. Why does too large
a time increment lead to errors? If you recall, our stepping equations use the
approximation that the average velocity is very close to the instantaneous
velocity. If the time step is too large, this approximation is no longer valid
and leads to errors.

We can improve our calculation of the motion by choosing a smaller
time increment Δ𝑡. If we choose Δ𝑡 = 0.01 s rather than 0.10 s, we would
be calculating over a much finer time interval (10 times smaller) and while
we will have to do 10 times more computations to evolve the motion out to
the same time, the calculations should be more accurate. Table 1.2 lists 𝑡,
𝑥, 𝑣𝑥 and 𝑎𝑥 near a point of maximum displacement for this smaller time
increment. The maximum displacement is now about 0.314. This is still
larger than the initial displacement but not nearly as bad as before. Further
reduction of the time increment would improve the result.
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Table 1.1: Numerical solution for mo-
tion of mass on a spring us-
ing Δ𝑡 = 0.10 s

𝑡 𝑥(𝑡) 𝑣𝑥(𝑡) 𝑎𝑥(𝑡)
0 0.300 0 -0.600

0.100 0.300 -0.060 -0.600
0.200 0.294 -0.120 -0.588
0.300 0.282 -0.179 -0.564
0.400 0.264 -0.235 -0.528
0.500 0.241 -0.288 -0.481
0.600 0.212 -0.336 -0.424
0.700 0.178 -0.379 -0.356
0.800 0.140 -0.414 -0.281
0.900 0.099 -0.442 -0.198
1.000 0.055 -0.462 -0.109
1.100 0.008 -0.473 -0.017
1.200 -0.039 -0.475 0.078
1.300 -0.086 -0.467 0.173
1.400 -0.133 -0.450 0.266
1.500 -0.178 -0.423 0.356
1.600 -0.220 -0.387 0.440
1.700 -0.259 -0.343 0.518
1.800 -0.293 -0.292 0.587
1.900 -0.322 -0.233 0.645
2.000 -0.346 -0.168 0.692
2.100 -0.363 -0.099 0.725
2.200 -0.373 -0.027 0.745
2.300 -0.375 0.048 0.750
2.400 -0.370 0.123 0.741
2.500 -0.358 0.197 0.716
2.600 -0.338 0.268 0.677
2.700 -0.312 0.336 0.623
2.800 -0.278 0.398 0.556
2.900 -0.238 0.454 0.476
3.000 -0.193 0.502 0.386
3.100 -0.143 0.540 0.285
3.200 -0.089 0.569 0.177
3.300 -0.032 0.587 0.063
3.400 0.027 0.593 -0.054
3.500 0.086 0.587 -0.173
3.600 0.145 0.570 -0.290
3.700 0.202 0.541 -0.404
3.800 0.256 0.501 -0.512
3.900 0.306 0.450 -0.612
4.000 0.351 0.388 -0.702
4.100 0.390 0.318 -0.780
4.200 0.422 0.240 -0.844
4.300 0.446 0.156 -0.892
4.400 0.461 0.067 -0.923
4.500 0.468 -0.026 -0.936
4.600 0.465 -0.119 -0.931

Table 1.2: Data for mass on a spring
near a turning point using
Δ𝑡 = 0.01 s

𝑡 𝑥(𝑡) 𝑣𝑥(𝑡) 𝑎𝑥(𝑡)
4.190 0.293 0.155 -0.586
4.200 0.295 0.149 -0.589
4.210 0.296 0.143 -0.592
4.220 0.297 0.137 -0.595
4.230 0.299 0.131 -0.598
4.240 0.300 0.125 -0.600
4.250 0.301 0.119 -0.603
4.260 0.303 0.113 -0.605
4.270 0.304 0.107 -0.607
4.280 0.305 0.101 -0.610
4.290 0.306 0.095 -0.612
4.300 0.307 0.089 -0.614
4.310 0.308 0.083 -0.615
4.320 0.308 0.077 -0.617
4.330 0.309 0.071 -0.619
4.340 0.310 0.064 -0.620
4.350 0.311 0.058 -0.621
4.360 0.311 0.052 -0.622
4.370 0.312 0.046 -0.623
4.380 0.312 0.040 -0.624
4.390 0.313 0.033 -0.625
4.400 0.313 0.027 -0.626
4.410 0.313 0.021 -0.626
4.420 0.313 0.014 -0.627
4.430 0.314 0.008 -0.627
4.440 0.314 0.002 -0.627
4.450 0.314 -0.004 -0.627
4.460 0.314 -0.011 -0.627
4.470 0.313 -0.017 -0.627
4.480 0.313 -0.023 -0.627
4.490 0.313 -0.029 -0.626
4.500 0.313 -0.036 -0.626
4.510 0.312 -0.042 -0.625
4.520 0.312 -0.048 -0.624
4.530 0.312 -0.054 -0.623
4.540 0.311 -0.061 -0.622
4.550 0.310 -0.067 -0.621
4.560 0.310 -0.073 -0.619
4.570 0.309 -0.079 -0.618
4.580 0.308 -0.085 -0.616
4.590 0.307 -0.092 -0.615
4.600 0.306 -0.098 -0.613
4.610 0.305 -0.104 -0.611
4.620 0.304 -0.110 -0.609
4.630 0.303 -0.116 -0.607
4.640 0.302 -0.122 -0.604
4.650 0.301 -0.128 -0.602
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Problems

1. For a certain mass-spring system the acceleration is given by 𝑎𝑥(𝑡) =
−0.10𝑥(𝑡). Suppose the initial position and velocity are 𝑥(0) = 10 m
and 𝑣𝑥(0) = −1.0m/s. Calculate 𝑥(𝑡) and 𝑣𝑥(𝑡) at 𝑡 = 2 s in two different
ways:

(a) Use two steps of 1 second each.

(b) Use four steps of 1
2 second each. Round only your final results to

three digits (keep all digits for the intermediate calculations).

(c) Why aren’t the answers to a) and b) the same?

2. A drag force on an object is opposite to its velocity and is often propor-
tional to its speed. Let’s immerse the mass-spring system of problem (1)
in a vat of salad oil so that the acceleration becomes

𝑎𝑥(𝑡) = −0.10𝑥(𝑡)− 𝑣𝑥(𝑡)

Repeat problem 1.1 for this acceleration. Compare the results with those
you originally got in problem 1.1. Are the results what you might expect
when a drag force is present?


