
Physics 212E Classical and Modern Physics Spring 2018

VPython Class 9: Fitting wavefunctions into “boxes” with a computer

1. Introduction

In class last week we talked about using Schrödinger’s equation to find special-case quantum wave
functions with definite energies. Today we introduce technique using a computer, called numerical
integration, to construct such special-case wavefunctions point by point.

Recall that Schrödinger’s equation is

− h̄2

2m

d2ψ(x)

dx2
+ U(x)ψ(x) = Eψ(x). (1)

I’m now going to use a standard trick to make things easier for computer work: I’m going to pick a set of
dimensionless variables. In the first part of the lab we’re going to look at the one-dimensional “particle
in a box” problem, or square-well potential, with the well having a length L, but I don’t want to worry
about whether L = 1 nm, or L = 0.3 nm, or something else, so I choose a new variable

X ≡ x

L
. (2)

The left end of the “box” will then be at X = 0, and the right end will be at X = 1. This choice also
affects the expression for the second derivative. Since x = XL, we have

d2ψ

dx2
=

1

L2

d2ψ

dX2
. (3)

Using this, and some re-arrangement, give Schrödinger’s equation as

−d
2ψ(X)

dX2
+

2mL2

h̄2
U(X)ψ(X) =

2mL2

h̄2
Eψ(X). (4)

or

−d
2ψ(X)

dX2
+

8mL2π2

h2
U(X)ψ(X) =

8mL2π2

h2
Eψ(X). (5)

This suggests defining new dimensionless variables for the energies E and U in terms of the energy
h2/8mL2:

E ′ =
E
h2

8mL2

= E
8mL2

h2
and U ′ =

U
h2

8mL2

= U
8mL2

h2
. (6)

Using these expressions, Schrödinger’s equation becomes

−d
2ψ(X)

dX2
+ π2U ′(X)ψ(X) = π2E ′ ψ(X). (7)

NOTE: I could just as easily have incorporated the factor of π2 within my definition of E ′ and U ′, but by
not doing so some things come out a little cleaner in this exercise.

This is now in a form that a computer can evaluate without the messy details of any constants hanging
around. Of course at the end, all dimensionless quantities like E ′ will have to be converted back to
energies with units. That’s easy though: just multiply E ′ by h2

8mL2 .

1



2. Solving Schrödinger’s equation numerically

Rearrangement of Eq. (7) highlights the fact that Schrödinger’s equation gives us information about the
second derivative of the wavefunction:

d2ψ(x)

dx2
= −π2 [E − U(x)] ψ(x), (8)

where I have switched back to conventional symbols x, U and E, but with the understanding that they
represent the dimensionless variables X , E ′, and U ′.

For a computer to build a solution to this equation we need a numerical approximation to the second
derivative given values of the function at a set of discrete points. We use an equally spaced set of value
of x given by

xi = x0 + i∆. (9)

(These values can be created using the SciPY linspace function: sp.linspace()). The corre-
sponding values of the function will be labeled

yi = f(xi). (10)

You are already familiar with a numerical approximation to the first derivative:

dy

dx

∣∣∣∣
xi

' yi+1 − yi
∆

. (11)

For the second derivative we can use this approximation for the first derivative in the intervals to the right
and left of xi:

d2y

dx2

∣∣∣∣
xi

'

dy

dx

∣∣∣∣∣
right

−
dy

dx

∣∣∣∣∣
left

∆

'
yi+1 − yi

∆
−
yi − yi−1

∆
∆

=
yi+1 − 2yi + yi−1

∆2
(12)

Solving this for yi+1 gives

yi+1 = 2yi − yi−1 + ∆2 d2y

dx2

∣∣∣∣
xi

. (13)

If we know y0 and y1, and we know the second derivative from Schrödinger’s equation, we can calculate
y2. Then we (i.e., the computer) can repeat the process over and over to calculate y3, y4, etc.

2.1 Particle in a box

• Locate graphing program you have written graphing and make sure that it still works. In the
following I’m assuming that you have have a Python function, and that it has a function definition
beginning with a def function_name: statement.

2



• Add a potential energy function at the top of your program. This is ridiculously simple for the first
part of this exercise when we’re considering a particle in a box:

def u(x):

return 0

• Make the left endpoint for your graph be x = 0, and your right endpoint be x = 1.

• Choose to graph at least 101 points.

• Create the array of x values using

x = sp.linspace(lep,rep,np)

where I have used the variables lep, rep, and np for my left endpoint, right endpoint, and number
of points respectively. (Remember that for np points, there are np - 1 intervals.)

• Calculate the distance between your points and define this to be dx.

• Modify your function so that it includes a “guess” for the dimensionless energy, the declaration of
an array for your y values (initially all set to zero), an initial value for y[1], and a for loop to
calculate the rest of the y values:

def integrate(x):

e = 0.8 # Value of dimensionless energy

y = sp.zeros(len(x)) # Create array for y values

y[1] = dx # Initialize y[1]

for i in range(1,np-1): # Calculate y[2], y[3], y[4], etc.

YOUR CODE HERE

return y

• At this point you should have the plot of a wavefunction corresponding to your first energy “guess”
e = 0.8. Is this a valid wavefunction for a particle in a box? If not, what do you have to adjust
to make it a valid wavefunction.

• Use your program to find the three lowest energies of the particle in a box. Convert the values you
get to quantities with dimensions. Is this what you expect?

3



2.2 Particle in a semi-infinite square well

∞

E

U(x) = 10

0 L x

U(x)

• Modify your potential energy function to correspond to that of a semi-infinite square well potential:

def u(x):

if x<1:

return 0

else:

return 10

• Make the right endpoint for your graphs be three, and increase the number of points accordingly.

• Fix the y limits for your graph to be ±2.

• Do your previous values of the energy work?

• Find the lowest two energies allowed in this potential.

4


	Introduction
	Solving Schrödinger's equation numerically
	Particle in a box
	Particle in a semi-infinite square well


