
Physics 212E Classical and Modern Physics Spring 2018

VPython Class 3: Teaching a Computer to Superpose: Fields, Functions, and the
dreaded r̂

1. Introduction

In our study of electric fields, we start with a single point charge source qsource located at some position
~rsource, and we want to know the field created by this source at some observation point ~robs. The rela-
tionship between the vectors is illustrated in Fig. 1. Note that this figure uses the conventions for axis
labeling that is consistent with that of the default view in VPython; in many textbooks, the default view
has z going up the page, y to the right, and x coming out of the page.

The vector displacement between the source and the observation point is given by

~r ≡ ~robs − ~rsource. (1)

Coulomb’s law then gives the field at ~robs due to the source at ~rsource:

~E =
kq

r2
r̂, (2)

where r̂ is the unit vector in the direction of ~r.
Your first task will be to write a Python program that will display a point charge at some position

~rsource along with an arrow representing the electric field at some other point ~robs. As a specific simple,
consider a point charge qsource = 3 C on the x-axis with coordinates (3,0,0), and suppose I ask for the field
at position with coordinates (3,2,0). Your Python program should display something like Fig. 2, with an
an arrow with its tail at the observation point, pointing away from the source, and a length proportional
to kqsource/r

2 = 3k/22 = 3k/4 (except your output will be much prettier, and you will be able change
your perspective, and zoom in and out). In this exercise we will set k = 1.

~robs

qsource

~rsource

~r = ~robs − ~rsource

x

z

y

observation point

r̂

Figure 1: Vectors associated with the positions of a point charge source and the observation point for an
electric field.

1

z

observation point

~E = 3k
4
̂

x

y

1 3

1

2

3

2

qsource

Figure 2: Example output. A source charge is located on the x-axis with coordinates (2,0,0), and we
show the field vector ~E with its tail at the observation point with coordinates (3,2,0).

2. Reminder about Python Jargon: Objects and Attributes

Before starting on the ultimate task of displaying field vectors, lets review some commands we used last
time and learn how to extend them, while introducing some of the language of Python.

The command

particle = sphere(pos=vector(0,0,0), radius=0.5, color=color.red,

charge = 5)

creates a sphere object (or equivalently, an object in the sphere class) whose name is particle. We
could give it any name we want (e.g., Fred or Ginger). The name is used as a way to identify the
object that we just created, and we can create other objects in the same class class with other names.

In creating the sphere above, we’ve given it certain attributes, namely a position, a radius, and a
color. The visual module automatically “knows” what to do with these attributes — in this case, it draws
the sphere centered at the given position, with the given radius and color. We have also added another
attribute to the object “by hand,” and called it charge; this isn’t a VPython attribute.

3. The r̂ vector

Now let’s get down to the business of calculating and displaying field vectors. We’ll start in this section
by displaying r̂ vectors.

In the rest of this section I’m not going to give you explicit commands to type. Rather, I would
like you to try to use resources at your disposal, including the handouts for VPython Classes #1 and
#2, and any programs you wrote last week, or the online information at http://vpython.org/
contents/docs/primitives.html. None of this should take much time. If you get bogged
down, just ask, and I’ll give you much more explicit instructions.

• Create a sphere object at (3, 0, 0) representing a source charge with q = +4. Let’s all agree to give
this sphere object the name source.

2

http://vpython.org/contents/docs/primitives.html
http://vpython.org/contents/docs/primitives.html

• The source object has several attributes. Which of these attributes corresponds to the vector
~rsource? Put a temporary print statement into your script to check and make sure that you know
how to get the vector ~rsource in terms of your Python variables. (Hint: source is not itself equal
to ~rsource.)

• Define an observation point at (3,2,0) as a Python vector with the name obs. This observation
point serves as ~robs. (There is no real need to define this as a sphere object; it’s just a point, with no
radius, color, or charge attributes. But if you want to display it with a colored sphere, that’s ok.)

• Determine a Python expression for the vector ~r in terms of your source and obs; I suggest
calling this r.

• Determine a Python expression for the vector r̂ in terms of your source and obs; I suggest
calling this rhat.

• Have VPython draw an arrow object at the position obs that represents r̂. (I use the attribute
shaftwidth=0.1). Do you get the arrow you expect?

• Change your observation point. Does the arrow representing r̂ change appropriately?

• Change the position of your source charge. Does the arrow representing r̂ change appropriately?

4. Visualizing electric field vectors

Modify your previous work so that your program gives the field vector at your observation point. (You
may set k = 1.) If you use the previously defined r and rhat, it should take a very modest modification
to go from an arrow representing r̂ to an arrow representing ~E. When you have this working, check the
effect of varying:

• the source charge (magnitude and sign),

• the position of the source charge, and

• the observation point.

Does the the displayed field vector change appropriately?

5. The electric field from multiple sources

Now consider two charges, illustrated in Fig. 3, like those we studied on the second day of class. Use
your electric field function to display the total field vector at the point (2,0,0). Check the field vector at
some other points, like (4, 0, 0), (0, 2, 0), (0,−2, 0),

6. Submit your work

Make sure to submit your work to my dropbox in facultystaff/m/mligare with the filename
vp03_lastname.py when you’re done.

3

+1

-1

q1 = +10

q2 = −10

Figure 3: Two charges

7. Extras

• Define a function which takes as inputs the your source obect and your observation point, and
returns a displayed arrow object.

• Reconsider the two charge example, and bump up the charges to ±30. Now create field vectors
at 16 equally spaced points around a circle of radius 4. Then add field vectors at equally spaced
points around a circle of radius 6. Think about the field lines that would represent the same vector
field.

• Generalize the two charge example to situations in which there are many more sources. What
features of Python will make this an easy task. Think about ways in which you might numerically
approximate an integral for an line of charge.

• . . .

4

	Introduction
	Reminder about Python Jargon: Objects and Attributes
	The vector
	Visualizing electric field vectors
	The electric field from multiple sources
	Submit your work
	Extras

