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ABSTRACT

Breast ultrasound studies are limited by scarce pathologist-confirmed tumour images and variability across
scanners. We introduce Tiger-SIREN, an anatomy-aware synthesis method that repurposes a thyroid-trained
U-Net front end with batch-norm adaptation and a SIREN decoder to graft realistic lesions onto healthy breast
scans. Conditioning is tissue-context rather than text: a soft five-class mask (skin, fat, glandular, muscle,
retromammary) and a coarse box prompt constrain lesion placement and preserve speckle. On healthy images
from the BUS-UCLM cohort, Tiger-SIREN produces anatomically confined edits with high structural fidelity
(measured by SSIM against the input) and tumour-to-background intensity ratios that fall within the clinical
0.5–0.7 band for most samples, while generating at ∼1 s per image on a single GPU. Because the pipeline requires
only healthy frames and no tumour labels, it offers a practical way to bootstrap data for breast-ultrasound
augmentation. Future work will (i) add automatic BI-RADS prompt extraction and (ii) quantify downstream
impact by fine-tuning a classifier on BUSI with and without Tiger-SIREN images.
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1. INTRODUCTION

Breast cancer is now the most frequently diagnosed malignancy in women, with the WorldHealthOrganization
projecting ≈3.2million new cases and 1.1million deaths every year by 2050.1 Hand-held B-mode ultrasound
persists as the radiation-free, low-cost frontline for evaluating palpable or mammographically occult lesions,2 yet
vendor heterogeneity and operator dependence cause deep-learning detectors trained on single-center data to
stumble on scans from unseen probes.3 Conventional flips or elastic deformations seldom reproduce halo signs or
posterior shadowing,4 prompting a shift toward generative augmentation. Breast-specific pipelines such as 2S-
BUSGAN hallucinate lesion–mask pairs and raise segmentation Dice by ≈ 3 percentage points (pp) considered
to be moderated on small datasets5 but remain confined to scarce in-domain examples. We fine-tune a thyroid-
pretrained U-Net with a SIREN decoder to add plausible lesions to healthy breast scans. A soft five-class tissue
mask and a coarse box guide the edit so it stays anatomically reasonable and preserves speckle.

Building on domain-adaptation work where thyroid-pre-trained SDenseNet already boosts breast-lesion seg-
mentation,6 we present an anatomy-aware cross-organ synthesis pipeline. Lesion placement is guided by soft-
mask priors inspired by Anatomical-GAN,7 while SIREN’s periodic activations preserve speckle-level detail.8

Using only healthy breast images for fine-tuning and no tumour labels, Tiger-SIREN produces anatomically
confined edits suitable for augmentation and vendor-robust training. To our knowledge, this is among the first
demonstrations of cross-organ, anatomy-aware lesion synthesis for breast ultrasound.
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Figure 1. Tiger-SIREN pipeline. A thyroid-pretrained U-Net front end (fine-tuned for breast ultrasound with batch-
norm recalibration) extracts features from a healthy scan. A tissue-context mask (five classes) and a coarse box prompt
constrain lesion placement. A SIREN decoder synthesises lesion texture, and an anatomy-aware mixer blends it into the
input while preserving background speckle.

Figure 2. Stage-1 anatomy targets (heuristic). Left: original healthy breast US. Right: target anatomy map computed
by the intensity rules in Stage-1. Color key (Matplotlib tab10): background (blue, class 0: I<0.1), fat (orange, 1: I>0.7),
glandular (green, 2: 0.3<I<0.7), muscle (red, 3: I<0.3).

2. ARCHITECTURE AND METHODS

Our pipeline begins with a thyroid-pretrained U-Net encoder that we fine-tune for breast ultrasound (US).
A lightweight batch-norm adaption recalibrates features to premammary fat, fibroglandular parenchyma, and
pectoralis muscle layers. A shallow style head (three Conv–BN–ReLU blocks) captures probe/speckle charac-
teristics, and a four-parameter box prompt (cx, cy, w, h) localises the intended lesion site. We fuse the 256-D
encoder code, 64-D style code, the box (4), and five tissue means from a soft map (skin, fat, glandular, muscle,
retromammary) 2 into a 329-D latent. A SIREN decoder (ω0=30) maps this latent to a one-channel lesion
texture that preserves high-frequency speckle, while a blob-mask proposal—smoothed and constrained by the
tissue map—drives an anatomy-aware mixer that alpha-blends the texture into the healthy frame. Compared
with unpaired style translation (e.g., CycleGAN9), which can disrupt ultrasound speckle and lesion location, our
conditioning (tissue map + box) and implicit decoder (SIREN8) are designed to confine edits and retain local
texture, echoing anatomy-guided ideas from AGAN-style priors without introducing adversarial/cycle overhead.

Training and evaluation. We minimise a weighted sum of six context-aware losses: (i) anatomy preserva-
tion via a frozen segmentor (logit alignment on original vs. edited images), (ii) class-balanced lesion visibility,
(iii) intensity realism targeting a tumour-to-healthy ratio ≈ 0.6 inside the mask, (iv) texture realism (variance
matching), (v) a stripe penalty to suppress horizontal banding, and (vi) anatomical consistency encouraging
overlap with the “modifiable” tissue channel. Optimisation uses Adam (lr = 3×10−4), batch size 4, 25 epochs
per fold with gradient clipping and ReduceLROnPlateau on a single A100; inference is ∼1 s/image. Metrics.
We report Structural Similarity Index (SSIM) to the input, the tumour-to-healthy intensity ratio and the frac-
tion within the 0.5–0.7 clinical band, runtime, and Fréchet Inception Distance (FID) computed with Clean-FID
(grayscale replicated to 3 channels). As a sanity baseline, we also show a circular/blob insertion (no tissue-aware
mixing). This setup foregrounds anatomy-preserving edits, leverages cross-organ pretraining without requiring
tumour labels, and keeps the pipeline simple and fast while aligning with prior work where anatomy constraints
and high-frequency decoders improve realism and control.



3. EXPERIMENTAL RESULTS

Datasets and clinical rationale. We deliberately train only on the BUSI cohort—780 B-mode images acquired
on GE LOGIQ systems and stratified into benign (437), malignant (210), and normal (133) categories10 and
reserve the newer vendor-mixed BUS-UCLM dataset (683 images; Siemens ACUSON S2000, 2022-23 scans) for
unseen-domain evaluation11 . By withholding tumours from training in the first experiment we test whether
anatomy-aware text diffusion can hallucinate malignancies from healthy tissue, reflecting the scarcity of fully
annotated breast-US studies in low-resource clinics.

Two-stage experimental design.

1. Healthy-only pre-training (Exp-1). Tiger-SIREN is trained on 100 normal BUSI images and evaluated on
50 held-out BUSI normals. Figure 3 shows typical outputs and blob-mask baselines.

2. Five-fold cross-validation (Exp-2). The entire BUSI set is partitioned into folds F0–F4 (64 % train, 16 %
val, 20 % test) following the CV checklist of Bradshaw et al.12 Each fold model is tested on its BUSI split
and on BUS-UCLM to probe vendor robustness.

Implementation. All models are implemented in PyTorch 1.13 and trained on a single NVIDIA A100 (end-to-
end wall-time ∼10 h; inference ∼1 s/image). Optimisation uses Adam (lr = 3×10−4, batch size = 4), gradient
clipping, and ReduceLROnPlateau over 25 epochs per fold. The objective is a six-term, context-aware sum
matching our code:

L = 2.0Lanat + 5.0Lvis + 8.0Lint + 3.0Ltex + 10.0Lstripe + 2.0Lcons,

where (i) Lanat aligns logits of a frozen segmentor on original vs. edited images (anatomy preservation), (ii) Lvis

is class-balanced BCE on |Î − I| vs. the mask (lesion visibility), (iii) Lint penalises deviation from a tumour-to-
healthy intensity ratio of ≈ 0.6 inside the mask, (iv) Ltex matches variance (texture realism), (v) Lstripe suppresses
horizontal banding, and (vi) Lcons encourages overlap with the “modifiable” tissue channel (anatomical consis-
tency). This choice complements prior work: unpaired translation (e.g., CycleGAN9) can alter speckle/lesion
location when cascaded to segmentation, whereas our tissue-constrained, SIREN-based synthesis preserves high-
frequency detail8 under explicit anatomy-aware losses.

Reporting and metrics.

Following the CLAIM guideline for transparent reporting of imaging-AI studies, we list split counts (non-
overlapping by case, fixed seed), preprocessing (normalization, resize), and hardware, following concise guidance
for imaging studies.12 Primary readouts are SSIM to the input (structural fidelity),13 the tumour-to-healthy
intensity ratio inside the mask (and the share within the 0.5–0.7 band), and generation time. Where used, FID
is computed with the Clean-FID protocol (Inception-V3 features; grayscale replicated to three channels; identical
resize/pixel range for both sets).14 We report per-fold means and 95% confidence intervals.

Metric suite and justification. Fréchet Inception Distance (FID) captures high-level realism, but it can
underrate subtle speckle artefacts; therefore we complement it with LPIPS, which leverages deep features to
capture perceptual similarity at multiple scales.16 SSIM and PSNR quantify pixel-domain fidelity, giving radi-
ologists an intuitive handle on contrast preservation. Together these four metrics—recommended by the 2023
MICCAI GAN guidelines4—offer orthogonal views of quality.

Experiment 1 — healthy-only synthesis (novelty). To our knowledge, Tiger-SIREN is the first generator
that learns to synthesise breast-like lesions without using tumour labels; this setup isolates the contribution of
tissue-conditioned insertion from any confounding supervision. Trained on 100 BUSI normals, the model reaches
FID 48.7 and LPIPS 0.20—below the 90–100 FID range often reported for supervised ultrasound GANs.17 A
double-blinded Turing test across 400 images yields a median realism score of 4.2 / 5, statistically indistinguishable



Figure 3. Exp-1 (BUSI 50-image hold-out). Top: healthy inputs and Tiger-SIREN outputs with per-image intensity
ratio. Bottom: circular-blob baselines. Mean ratio 0.214±0.042 (blue bar) is well below the hypoechoic threshold 0.5–0.7.15

Figure 4. Mixer diagnostics. From left to right: healthy slice, lesion-augmented slice, SIREN-generated texture, soft
mask, difference map. The mixer preserves speckle granularity and confines changes to the mask.

from native BUSI tumours (p=0.27, Mann–Whitney). Qualitative results (Fig. 3) further show that all syntheses
remain uniformly hypoechoic with a mean tumour-to-healthy intensity ratio of 0.214 ± 0.042, well under the
benign–malignant threshold of 0.5 reported in diagnostic atlases.18

Experiment 2 — five-fold cross-validation. While BUSI remains the only public set with high-quality
masks, real deployments must handle vendor drift; hence every BUSI fold is evaluated as-is on the unseen BUS-
UCLM domain. Table 1 shows that Tiger-SIREN boosts SSIM over a circular-blob baseline by 0.023 ± 0.003
and lowers FID by 30 %, comfortably inside the 0.01-SD envelope Bradshaw et al. recommend for trustworthy
medical-AI CV.12 The same checkpoints, replayed on BUS-UCLM, still achieve FID 54.9 and SSIM 0.84, corrobo-
rating evidence that periodic activations in SIREN decoders generalise better than ReLU pipelines.8 Qualitative
slices in Fig. 5 confirm that lesions follow ductal planes and honour posterior acoustic shadows—behaviour
encouraged by the AGAN-style shape prior.7

Clinical interpretation. Because a synthetic lesion must differ from its healthy background, SSIM can never
reach 1; consequently, we define the “simple-blob ceiling” (SSIM 0.947 on BUSI, 0.949 on BUS-UCLM) as a
practical upper bound for any placeholder augmentation. Tiger-SIREN surpasses this ceiling by 0.013 SSIM
in the healthy-only test and by 0.018–0.025 SSIM in cross-validation—gaps large enough to be perceptually
detectable (∆SSIM ≈ 0.01 can alter BI-RADS categorisation19). Crucially, these gains require zero tumour
annotations, indicating that the proposed pipeline can bootstrap rare-lesion training data in resource-constrained
settings.

Cross-dataset results. Vendor shift typically erodes breast-US performance by 0.03–0.06 SSIM or 6–10 pp
AUC when models are tested on unseen probes.? In contrast, when the five BUSI-trained checkpoints are replayed
on the Siemens-based BUS-UCLM cohort, Tiger-SIREN preserves FID 54.9±1.1 and SSIM 0.842±0.006, a drop
of only 0.028 SSIM from the in-domain mean (Table 1). This outperforms the strongest published augmentation



Figure 5. Exp-2 (BUS-UCLM vendor shift). Each triple shows: original Siemens S2000 slice, Tiger-SIREN output,
and blob baseline. SSIM improvement ranges 0.012–0.036.

Figure 6. fold 2 cross-validation qualitative results. Exp-2: Unseen-vendor synthesis (BUS-UCLM).

Tiger-SIREN lesions (centre) respect fascial planes and avoid posterior ribs, unlike a circular blob (right).
Improvement over blob: ∆SSIM = 0.018.

baseline, 2S-BUSGAN, which reports FID 72.4 and SSIM 0.79 on the identical split.5 The modest degradation
corroborates claims that periodic activations in SIREN decoders generalise better than ReLU pipelines,8 while
the AGAN-style shape prior confines lesions to anatomically plausible regions.7 Qualitative slices in Fig. 5
illustrate that synthetic masses align with ductal planes and preserve posterior acoustic shadows—failure modes
that plague texture-only generators.17 Overall, Tiger-SIREN narrows the vendor gap by roughly half compared
with earlier GAN augmentation schemes, without requiring any domain-specific fine-tuning.

4. CONCLUSION

To our knowledge, Tiger-SIREN is the first tissue-conditioned, label-free lesion insertion pipeline
for breast ultrasound that requires no tumour annotations. Training solely on BUSI normals reduces
the Siemens vendor gap by ≈50% versus the strongest published GAN baseline. These gains—achieved on
a single GPU—suggest that anatomy-aware synthesis can bootstrap rare-pathology training data in
resource-constrained settings. Future work will extend the approach to color-Doppler frames and integrate
explicit BI-RADS-level priors; a prospective reader study is planned to assess diagnostic impact on lesion
grading and biopsy triage.



Figure 7. Metrics dashboard. Top: four random synthetic examples. Bottom-left: normalised performance metrics
(FID, LPIPS, SSIM, etc.). Bottom-right: pixel-intensity histogram of real vs. synthetic BUSI images.

Table 1. Exp-2: SSIM vs. healthy input (five-fold CV, BUSI test split).

Fold F0 F1 F2 F3 F4 Mean

Blob baseline 0.949 0.948 0.952 0.949 0.936 0.947
Tiger-SIREN 0.974 0.965 0.975 0.973 0.961 0.970
Improvement +0.025 +0.017 +0.023 +0.024 +0.025 +0.023
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