/* get_data4.c -- Parallel Trapezoidal Rule. Uses MPI_Pack/Unpack in * distribution of input data. * * Input: * a, b: limits of integration. * n: number of trapezoids. * Output: Estimate of the integral from a to b of f(x) * using the trapezoidal rule and n trapezoids. * * Notes: * 1. f(x) is hardwired. * 2. the number of processes (p) should evenly divide * the number of trapezoids (n). * * See Chap 6., pp. 100 & ff in PPMPI */ #include /* We'll be using MPI routines, definitions, etc. */ #include "mpi.h" main(int argc, char** argv) { int my_rank; /* My process rank */ int p; /* The number of processes */ float a; /* Left endpoint */ float b; /* Right endpoint */ int n; /* Number of trapezoids */ float h; /* Trapezoid base length */ float local_a; /* Left endpoint my process */ float local_b; /* Right endpoint my process */ int local_n; /* Number of trapezoids for */ /* my calculation */ float integral; /* Integral over my interval */ float total; /* Total integral */ int source; /* Process sending integral */ int dest = 0; /* All messages go to 0 */ int tag = 0; MPI_Status status; void Get_data4(float* a_ptr, float* b_ptr, int* n_ptr, int my_rank); float Trap(float local_a, float local_b, int local_n, float h); /* Calculate local integral */ /* Let the system do what it needs to start up MPI */ MPI_Init(&argc, &argv); /* Get my process rank */ MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); /* Find out how many processes are being used */ MPI_Comm_size(MPI_COMM_WORLD, &p); Get_data4(&a, &b, &n, my_rank); h = (b-a)/n; /* h is the same for all processes */ local_n = n/p; /* So is the number of trapezoids */ /* Length of each process' interval of * integration = local_n*h. So my interval * starts at: */ local_a = a + my_rank*local_n*h; local_b = local_a + local_n*h; integral = Trap(local_a, local_b, local_n, h); /* Add up the integrals calculated by each process */ MPI_Reduce(&integral, &total, 1, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD); /* Print the result */ if (my_rank == 0) { printf("With n = %d trapezoids, our estimate\n", n); printf("of the integral from %f to %f = %f\n", a, b, total); } /* Shut down MPI */ MPI_Finalize(); } /* main */ /********************************************************************/ void Get_data4( float* a_ptr /* out */, float* b_ptr /* out */, int* n_ptr /* out */, int my_rank /* in */) { char buffer[100]; /* Store data in buffer */ int position; /* Keep track of where data is */ /* in the buffer */ if (my_rank == 0){ printf("Enter a, b, and n\n"); scanf("%f %f %d", a_ptr, b_ptr, n_ptr); /* Now pack the data into buffer. Position = 0 */ /* says start at beginning of buffer. */ position = 0; /* Position is in/out */ MPI_Pack(a_ptr, 1, MPI_FLOAT, buffer, 100, &position, MPI_COMM_WORLD); /* Position has been incremented: it now refer- */ /* ences the first free location in buffer. */ MPI_Pack(b_ptr, 1, MPI_FLOAT, buffer, 100, &position, MPI_COMM_WORLD); /* Position has been incremented again. */ MPI_Pack(n_ptr, 1, MPI_INT, buffer, 100, &position, MPI_COMM_WORLD); /* Position has been incremented again. */ /* Now broadcast contents of buffer */ MPI_Bcast(buffer, 100, MPI_PACKED, 0, MPI_COMM_WORLD); } else { MPI_Bcast(buffer, 100, MPI_PACKED, 0, MPI_COMM_WORLD); /* Now unpack the contents of buffer */ position = 0; MPI_Unpack(buffer, 100, &position, a_ptr, 1, MPI_FLOAT, MPI_COMM_WORLD); /* Once again position has been incremented: */ /* it now references the beginning of b. */ MPI_Unpack(buffer, 100, &position, b_ptr, 1, MPI_FLOAT, MPI_COMM_WORLD); MPI_Unpack(buffer, 100, &position, n_ptr, 1, MPI_INT, MPI_COMM_WORLD); } } /* Get_data4 */ /********************************************************************/ float Trap( float local_a /* in */, float local_b /* in */, int local_n /* in */, float h /* in */) { float integral; /* Store result in integral */ float x; int i; float f(float x); /* function we're integrating */ integral = (f(local_a) + f(local_b))/2.0; x = local_a; for (i = 1; i <= local_n-1; i++) { x = x + h; integral = integral + f(x); } integral = integral*h; return integral; } /* Trap */ /********************************************************************/ float f(float x) { float return_val; /* Calculate f(x). */ /* Store calculation in return_val. */ return_val = x*x; return return_val; } /* f */