The role of lobes in chaotic mixing of miscible and immiscible impurities
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Experiments compare long-range chaotic mixing of mis-
cible and immiscible impurities in a time-periodic flow. For
the miscible case, the transport is enhanced diffusion with an
effective diffusion constant determined by lobes (turnstiles)
that carry impurities between vortices. For the immiscible
case, the impurity is broken into a distribution of droplets. If
the characteristic droplet size is appreciably smaller than the
lobe size, the transport is equivalent to that from the miscible
case. Otherwise, interfacial tension results in reduction (and
possibly extinction) of the transport.
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The motion of a passive tracer in a two-dimensional
fluid flow is known to be mathematically equivalent to
the phase space trajectory of a Hamiltonian system [1,2].
If the velocity field is time-periodic, then the trajectories
may be chaotic, showing sensitivity to initial conditions.
When a miscible impurity is injected into such a flow,
ordered and chaotic mixing regions form [3], character-
istic of the phase space of a chaotic Hamiltonian system.
This Hamiltonian formalism, however, is not rigorously
valid for the mixing of an immiscible impurity (e.g., oil
in water), since interfacial tension causes an attractive
force between impurity particles, which therefore can no
longer be considered to be following phase space traject-
ories. We describe here experiments that explore chaotic
mixing of immiscible fluids, comparing the results to mis-
cible mixing in the same flow. Despite the effects of in-
terfacial tension, we demonstrate that the tools of chaotic
advection can still be used to describe transport in the
immiscible case.

Chaotic mixing of miscible impurities over distances
larger than typical length scales of the flow (“long-range”)
can often be described as enhanced diffusion, where the
variance of the concentration field grows linearly with
time. It has been proposed [4] that the effective diffu-
sion constant D* for diffusive chaotic mixing (e.g., for
time-periodic Rayleigh-Bénard convection [5]) can be ex-
plained theoretically by analyzing lobes [6] (or turnstiles
[2]) that carry impurities between unit cells of the system.
Our experiments verify these approaches by measuring
independently the lobe areas and D* for several miscible
transport runs. Furthermore, we show that the lobes,
which are Hamiltonian structures, provide the key to un-
derstanding mixing in the non-Hamiltonian, immiscible
case.

The two-dimensional flow in these experiments is a
chain of alternating vortices. This flow is chosen both for

its simplicity and for its similarity to Rayleigh-Bénard
(RB) convection. The flow is forced by a magnetohydro-
dynamic technique [7] (Fig. 1). A 10 mA current is passed
through a 0.2 cm deep layer of salt water. This current
interacts with an alternating magnetic field, produced by
a linear array of Nd-Fe-Bo magnets below the fluid layer.
This results in periodic forcing in the fluid, producing the
alternating vortex structure (Fig. 1b). The side-walls of
the inner cell employ a double-tab method [8] (Fig. 1c).
The water interface curves upward slightly above the bot-
tom ledge, but flattens out over the region of interest in
the flow. This method allows floating oil droplets to ex-
plore the entire width of the flow field without sticking to
the walls.
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FIG. 1. Diagram of experimental apparatus. (a) Side view
of apparatus. (b) Exploded view showing the magnetohydro-
dynamic forcing and a sketch of the chain of alternating vor-
tices in the fluid layer above the magnet assembly. (c) Sketch
of the side-walls and pinning of the fluid interface. The fluid
layer trapped between the side-walls measures 3.8 cm x 26.7
cm, with a depth of 0.2 cm. The magnets each have a diameter
of 1.91 c¢m.

For the “even” oscillatory instability of RB convection
[9], a cross-section of the velocity field shows a chain of
vortices that oscillate laterally. In our experiments, lat-
eral oscillations are generated artificially by oscillating a
small plunger vertically in the fluid (Fig. 1a), displacing
the fluid slowly (no surface waves) back and forth across
the (stationary) velocity field. Kinematically, the beha-
vior is similar to that for the even oscillatory instability
of RB convection, since the oscillation period for the plun-
ger is 19 s, much longer than the viscous diffusion time



of 4 s. The magnitude of the time dependence is char-
acterized by the dimensionless amplitude b = (oscillation
amplitude)/(vortex width). While maintaining a realistic
form for time dependence, this method has the advantage
of allowing independent control of the oscillation amp-
litude and frequency, permitting much better quantitative
measurements of transport than with RB convection.

For the miscible studies, uranine dye is mixed with
a small amount of ethanol (to make the dye neutrally
buoyant) and injected near the surface of the fluid layer
in the central vortex. The fluid and dye are illuminated
with fluorescent black light lamps and imaged from above
with a CCD video camera.
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FIG. 2. Sequence of images showing the mixing of uranine
dye; oscillation amplitude b=0.12. The images (starting from
the top) are taken 18 s, 39 s, 57 s, 75 s and 189 s (= 1, 2,
3, 4 and 10 oscillation periods) after the time dependence has
been turned on.

Many of the classic signatures of chaotic mixing are
apparent for the mixing of uranine dye (Fig. 2). Three
lobes are apparent in the top frame of Fig. 2: two lobes
carrying dye from the central vortex to its two immedi-
ate neighbors, and one lobe carrying clear fluid into the
central vortex. The lobes are stretched by the flow and
folded back repeatedly in the vicinity of the hyperbolic
fixed points, similar to the stretching and folding typical
of horseshoe and Bakers maps [10]. Kolmogorov-Arnold-
Moser (KAM) invariant surfaces are manifested in these
images as (temporary) barriers to fluid mixing, result-
ing in unmixed regions in the vortex centers. There are
very slight secondary flows in the system due to Ekman
pumping [11], shown by the hole in the central vortex
that develops as initially clear fluid below the surface is
circulated up through the center. This weak secondary
flow, in conjunction with molecular diffusion, results in
the eventual mixing of dye into the vortex centers.

A prediction for the effective diffusion constant D* for
this mixing process is obtained by measuring the area of
the lobes. Assuming mixing within the vortices due to
Ekman pumping, the ratio of the lobe area A; to the vor-
tex area A, determines the flux F' of impurity between

vortices in one oscillation period. This flux is then in-
serted into a 1-D version of Fick’s Law F = D*de/dz
(where ¢ is the concentration), resulting in a prediction
D* = (Ale/AUT) where d = 1.91 e¢m is the center-to-
center vortex separation and 7' = 19 s is the period of os-
cillation. The results of this analysis are shown in Table 1
for experiments with amplitudes b = 0.06,0.12 and 0.24.

An independent measurement of D* is obtained by
plotting the variance (z?) of the distribution as a function
of time (Fig. 3) [12]. Scaling regions are apparent for os-
cillation amplitudes 6=0.06 and 0.12, indicating diffusive
mixing. D* for the diffusive regime is one-half the slope
of these plots. For 6=0.06 and 0.12, the results (shown
in Table 1) are D* = 0.007 and 0. 015 (£ 0.001) cm?/s,
respectively. These values agree with those from ‘rhe lobe
analysis, indicating that the simple lobe description of
transport works very well. For the b=0.24 case, a clear
scaling region can not be identified; however, the plotted
slope from the lobe analysis is consistent with the growth
of (x?) for intermediate times.
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FIG. 3. Variance (z?) for mixing of dye; b=0.06 (triangles
at bottom), b=0.12 (circles), b=0.24 (squares at top). Linear
fits are shown as solid lines for 6=0.06 and 0.12. For 6=0.24,
the solid line represents the lobe analysis prediction.

b Ay (em®)  AJA,  Diy. (cm®/s) Dia, (em®/s)
(£0.01) (+0.04) (& 0.006) (& 0.001) (£ 0.001)
0.06 0.28 0.039 0.007 0.007
0.12 0.58 0.080 0.015 0.015
0.24 1.09 0.150 0.029 - — =
TABLE I. Determination of effective diffusion constant
D* for three oscillation amplitudes b. A; is the lobe area,
A, = 7.26 cm is the vortex area, D}, is the result from the

lobe analysis, and D, is obtained from the variance meas-
urements (see Fig. 3).



Experiments on immiscible mixing are conducted with
a fluorescent oil (APD oil dye P/N 801) with viscosity
15 cp. The oil floats on the free surface of the water,
so deformation of the flattened oil drops by the flow is
affected by interfacial tensions between the oil and wa-
ter and between the oil and air. In these experiments,
the resiliency of the oil drops against deformation is char-
acterized by the time 7 for an elongated drop (from a
recently-broken filament) with area 5 cm? to relax from
an aspect ratio of 4 to 2 [13]. This resiliency is adjusted
by varying the interfacial tensions with the addition of
surface-active impurities (RBS cleaning solution) to the
water. Three different conditions are studied: small, me-
dium and large droplet resiliency with 7 = 3 s, 1.5 s, and
0.5 s, respectively.

The mixing of oil (Fig. 4) initially looks similar to that
of dye (compare with Fig. 2). Oil crosses vortex bound-
aries in lobes near the hyperbolic fixed points and is
stretched into thin filaments. Unlike a miscible impurity,
however, filaments of oil are not stretched indefinitely;
rather, the stretched filaments break, forming discrete
droplets. The process continues until the oil has been
broken down into a steady-state distribution of droplets
[14]. (Previous studies have analyzed the steady state
droplet distribution for breakup of oil due to chaotic ad-
vection [15].) If the oil’s resiliency is large enough, the
oil is not able even to cross between vortices (inset of
Fig. 4); the oil is literally pulled back out of the lobes by
the interfacial tension.

FIG. 4. Sequence showing the mixing of an immiscible im-
purity; oscillation amplitude =0.12, small oil resiliency (7 =
3 s). The images (starting from the top) are taken 18 s, 39 s,
57s, 755,189 s, and 1890 s (= 1, 2, 3, 4, 10 and 99 oscillation
periods) after the time dependence has been turned on. The
inset shows the corresponding process with larger resiliency (7
= 0.5 s); images are separated by 3 seconds each. In this case,
interfacial tension prevents oil from being carried through the
lobes (denoted by white arrows).

We analyze the immiscible transport problem using
a simple phenomenological model in which steady-state
droplet sizes are compared with the lobe size (measured
for comparable miscible runs). We define a dimensionless

droplet area T' = A/A;, where A and A; are the droplet
and lobe areas. Conceptually, three regimes are expected,
determined by the characteristic droplet scale I';, defined
such that half of the total amount of oil is contained in
drops smaller than T'e. If T 3> 1 (blob regime), then the
oil droplets are too large to be carried from one vortex
to another through the lobes, resulting in no long-range
transport. On the other hand, if T. < 1 (tracer regime),
then droplets are advected with the flow like (almost)
passive tracers. In this regime, we expect the transport
to be identical to that for the miscible case, since a mis-
cible impurity is nothing more than a collection of small
(molecular) tracer particles. The third intermediate re-
gime is a cross-over regime between these two extremes.

The variance for the run shown in Fig. 4 is plotted in
Fig. 5 (open squares) [16]. This plot has the same slope
(within error) as that for a dye run with the same flow
parameters (top solid curve in Fig. 5). The transport of
oil therefore has the same D* as for the miscible case,
identifying this as a tracer regime run. A plot of the
characteristic droplet area T'. for this run is shown in
the inset of Fig. 5 (solid line). In the long time limit,
T'. m 0.17 | so the droplets are substantially smaller than
the lobes, consistent with this being in the tracer regime.
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FIG. 5. Variance {z*) versus time for both oil and dye;
b=0.12 in all cases; dye (top solid line), oil with 7 = 3 s
(open squares), oil with 7 = 1.5 s (filled triangles). Linear
fits are shown for the oil data, to be compared with the slope
of the data for the dye. The inset shows the dimensionless
characteristic droplet size 1. versus time (in s) for the same
experimental runs; 7 = 3 s (solid curve) and 7 = 1.5 s (dashed
curve).

In the immiscible transport run of Fig. 4, the two
largest oil droplets remain in the central vortex [17].
The dimensionless area I' of the second largest droplet
(0.44), compared with that for the next largest droplet
(0.30), indicates that there is an important cross-over
scale T' & 0.3 — 0.4. Specifically, drops with T < 0.3
participate in long-range transport, whereas drops with
I' > 0.4 do not. This cross-over scale is supported by
another immiscible run with a larger droplet resiliency



(filled triangles in Fig. 5 and dashed line in the inset).
The characteristic drop size T'. approaches 0.30 in the
long-time limit, comparable to the cross-over length scale
discussed above. The transport, in this case, is signi-
ficantly smaller than for the run in Fig. 4, as would be
expected if a substantial portion of the oil is not mixing.
Assuming diffusive mixing, D* = 0.0028 cm?/s for this
run, more than a factor of 5 smaller than the miscible
result.

A mixing experiment with much higher resiliency (inset
of Fig. 4) shows no transport at all: D* = 0. (The data
are not shown in Fig. 5.) There is some initial breakup of
the oil into smaller droplets, but the drops remain larger
than the lobe size, with ' &~ 2 in the long time limit.
The transport is almost completely halted after a short
transient period [18]. This run is evidence of the blob
regime discussed above.

Measurements have been made at other oscillation
amplitudes b, and the results are consistent with those
presented here. Experimentally, increasing b decreases
the steady-state droplet areas while increasing A;, dra-
matically lowering T'. and driving the system into the
tracer regime. Conversely, the tracer regime is almost
unattainable for smaller b. With an amplitude b = 0.24,
I'. approaches 0.06 and 0.25 for 7 = 3.0 s and 0.5 s, re-
spectively. In both of these cases, D* is equivalent to
that for the miscible case, within error. With b = 0.06,
I'. ~ 0.7 for the smallest resiliency used (7 = 3.0 s), and
there is no long-range transport (blob regime). At this os-
cillation amplitude, the tracer regime is recovered only if
the oil is broken up artificially, resulting in T'. = 0.15. In
this case, the miscible result is recovered (tracer regime).

Summarizing, we have shown experimentally that the
most significant features of long-range chaotic mixing can
be interpreted by considering the lobes. For mixing of
miscible impurities the lobe areas determine the effective
diffusion constant D*. The substantially more complic-
ated immiscible problem can, as well, be understood by a
remarkably simple model in which droplet sizes are com-
pared with the lobe size. If the characteristic dimension-
less droplet area T, 2 0.4, there is no appreciable mixing.
If T. S 0.3, then the mixing is similar to that for the
miscible case. Tf 0.3 S T, S 0.4, there is long-range mix-
ing but with a reduced D*. Experiments are currently in
progress to study these problems with quasiperiodic and
noisy time dependence.
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