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Abstract

Experiments are presented on chemical front propagation in an oscillating chain of vortices in

which the mixing of passive impurities is chaotic. The excitable Ruthenium-catalyzed Belousov-

Zhabotinsky reaction is used in these studies. Velocities of the propagating fronts are measured

as a function of the frequency and amplitude of external forcing. Mode-locking is observed where

the front propagates an integer number of vortices in an integer number of drive periods. Arnol’d

tongues are mapped out for two of the locking regimes. These two tongues are shown to form

a region of overlap where the velocity of the propagating front switches erratically between two

locked values. The experimental results agree with numerical predictions of mode-locking in a

simplified model of the flow.
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I. INTRODUCTION

There is a great deal of interest in the patterns that form in interacting systems; e.g.,

chemical reactions [1, 2], interacting populations and ecosystems [3], and systems undergo-

ing phase transitions [4]. The vast majority of previous research on pattern-formation in

reacting systems has concentrated on the reaction-diffusion limit [5, 6] in which there are no

fluid flows; consequently, mixing is achieved solely via molecular diffusion. However, most

fluid systems are not stagnant; flows in the system significantly affect the mixing proper-

ties and thereby dramatically alter the pattern-formation process. Despite the significant

impact fluid mixing has on these processes, there has been very little theoretical work on

the more general “advection-reaction-diffusion” problem [7–12], and there have been almost

no experimental studies [13–16]. The issue of the role of advection in the pattern-formation

process is particularly interesting in light of the discovery that mixing can be chaotic even

for very simple, laminar fluid flows [17, 18].

Many reacting systems are characterized by the propagation of a front across the system.

Examples of front propagation can be seen in a wide range of systems, such as marine

ecology [19, 20], combustion [21, 22], solidification [4], and the spreading of diseases [23].

The majority of previous studies of front propagation deal with the reaction-diffusion regime.

The effects of fluid flows on front propagation, by contrast, have not been studied in great

detail. In particular, a greater understanding of the role of coherent flow structures – such

as vortices – on the front propagation process is needed.

In this article, we present experimental studies of chemical front propagation in an

advection-reaction-diffusion system. A variation of the excitable Ruthenium-catalyzed

Belousov-Zhabotinsky reaction is used to generate a chemical pulse which can be manipu-

lated (and, in fact, erased) optically. The flow consists of a chain of alternating vortices in

an annular configuration. The system is forced periodically with the vortex chain oscillating

in the azimuthal direction, resulting in chaotic mixing [24–26]. In the experiments presented

here, the velocities of the chemical fronts are studied as a function of the amplitude and

frequency of the external forcing. The experimental results are compared to previous nu-

merical studies [11] that predict mode-locking of the chemical fronts to the external forcing.

Mode-locking behavior has been seen in many other physical systems [27, 28]; this, however,

is the first experimental evidence of mode-locking in an advection-reaction-diffusion system
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[16].

In section II we present a summary of theories and numerical simulations that are relevant

to the current experiments. Section III provides details on the experimental techniques,

chemical reaction used in these experiments, and analysis techniques. The experimental

results are presented in section IV and further discussed in section V.

II. BACKGROUND

A. Front Propagation

A wide range of front propagation processes can be modelled by autocatalytic reactions

of the form A+B → 2B [12]. This corresponds to the case where a stable phase (B) pene-

trates into an unstable phase (A). The dynamics of a propagating front is governed by the

interplay between mixing in the system and the interaction between the different species.

For an autocatalytic process in the reaction-diffusion limit the front speeds depend upon the

molecular diffusivity D0 and the production process of the reaction that occurs on a time

scale τ . In the absence of fluid flows, the front velocity v0 has been predicted by Fisher and

Kolmogorov [29–31] to be given by

v0 = 2

√
D0

τ
. (1)

Although derived specifically for autocatalytic processes, this result has also been shown

to hold for certain “trigger” or pulse-like reactions, including the Ru-catalyzed BZ reaction

used in these experiments [32].

The next question is as follows: how is the front velocity modified in the presence of fluid

flows? In general the front velocity will not be constant; however, it is reasonable to expect

that it will be possible to define an average velocity vf that can be predicted theoretically

from the generalized advection-reaction-diffusion problem. This average front velocity vf is

bounded above by v0 + U , where U is the maximum flow velocity.

Transport in many fluid flows can be characterized as enhanced diffusion with an effective

diffusion coefficient Deff . It is natural to propose that the Fisher-Kolmogorov theory might

still apply for these cases, assuming the molecular diffusion coefficient D0 in Eq. 1 is replaced

by the effective diffusion coefficient Deff . In the limit of very slow reaction [21], this approach
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FIG. 1: Schematic of a chain of alternating vortices. The arrows show the direction of the flow
within each vortex.

works, since the advection in the system dominates the dynamics [33]. Similarly, in the limit

of very fast reactions, the flow becomes insignificant and the Fisher-Kolmogorov result is

valid. For typical, naturally-occurring systems, however, the reaction time scale τ is often on

the order of the fluid velocity time scale. In this case replacing D0 with Deff is insufficient

[34].

A general method for theoretically predicting vf for advection-reaction-diffusion systems

is still unknown and therefore numerical simulations must be employed. The dynamics of

such fronts is simulated in the geometrical optics regime [35] by Cencini et. al [11]. The

geometrical optics regime corresponds to the limit of fast reaction and thin fronts, and is

rigorously defined as the limit of τ → 0 and D0 → 0 while maintaining the ratio D0/τ

constant [36].

B. Oscillating Vortex Chain

The flow in these studies is an oscillating vortex chain, as shown in Fig. 1. Time

dependence is achieved by oscillating the entire chain periodically in a lateral direction

(along the direction of the chain). This flow has been modelled numerically [24] using the

following streamfunction:

ψ(x, y, t) =
U

k
sin(kxs(t))W (y) (2)

where xs(t) = x + Bsin(ωt) accounts for the lateral oscillation of the vortex chain with

amplitude B and angular frequency ω. The x- and y-velocities for tracers moving in the flow

can be derived from Eq. 2 via Hamilton’s equations of motion: ẋ = ∂ψ/∂y and ẏ = −∂ψ/∂x.

The y-dependence W (y) is determined by the boundary conditions at y = 0 and y = d. For

free-slip boundary conditions,

W (y) = sin(πy/d). (3)
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The resulting flow is modelled by the following equations:

ux(x, y, t) = U sin
(π

d
(x + B sin (ωt))

)
cos

(π

d
y
)

, (4)

uy(x, y, t) = −U cos
(π

d
(x + B sin (ωt))

)
sin

(π

d
y
)

, (5)

where ux and uy are the flow velocities in the x- and y-directions, respectively, U is the

maximum flow velocity, and d is the width and height of a vortex. The y-dependence is

more complicated for the case with no-slip boundary conditions [37].

The vortices in these studies have unity aspect ratio; the wavelength (which is two vortex

widths) is λ = 2d. The oscillation amplitude can be expressed non-dimensionally as a

fraction of a vortex width b ≡ kB/π, where k is the wavenumber defined as k = 2π/λ. The

oscillation frequency may be scaled by the advective (mixing) time scale τadv ≡ 2π/kU . By

using this time scale, the frequency of oscillation can be expressed non-dimensionally by

ν ≡ ω/kU .

Mixing in the oscillating vortex chain depends critically on the oscillation amplitude

b. If b = 0 then the vortex chain is stationary (time-independent). In this regime, long

range mixing is slow, determined by an interplay between advection of impurites within

the vortices and diffusion across the separatrices from one vortex to the next [38, 39]. For

b 6= 0, the resulting time-dependence produces chaotic mixing [24, 25, 40–42] which greatly

enhances long-range transport. For small oscillation amplitudes, tracers near the centers

of the vortices typically follow ordered trajectories, while those near the perimeters of the

vortices follow chaotic trajectories. The size of the chaotic region around and between the

vortices grows with oscillation amplitude; in fact, for many of the experimental runs, the

chaotic region occupies a significant portion of the flow.

C. Mode-Locking and Arnol’d Tongues

Mode-locking can occur for a system that is periodically forced by an external stimu-

lus. Systems that mode-lock typically have a natural, internal frequency of oscillation in

the absence of external forcing. Mode-locking occurs when the system changes its natural

frequency to become a rational multiple of the frequency of the external stimulus. Mode-

locking phenomenon has been seen in a wide range of physical, chemical and biological
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systems. Examples include circadian rhythms (24-hour periodicity) such as the sleep-wake

cycles forced by the sun [43], arrays of Josephson’s junctions [44], and chemical oscillators

[45].

Mode-locking behavior has been shown to depend both upon the frequency of the imposed

forcing as well as the amplitude. Ideally, for frequencies very near the natural frequency

of oscillation for the system, only small oscillation amplitudes should be required to induce

mode-locking. Further from the natural frequency, though, greater amplitudes are required

to cause the system to change its oscillation frequency to match that of the external forcing.

Typically, threshold amplitudes exist below which the system will not mode-lock for any

frequency.

The dependence of mode-locking behavior on both the frequency and amplitude of oscil-

lation is shown by mapping out “Arnol’d tongues” [46] for a given system. Arnol’d tongues

are represented by plotting a parameter-space diagram (amplitude versus frequency) show-

ing locking behavior. An Arnol’d tongue is the region in this parameter space in which

the system is mode-locked with a particular (rational) ratio of the internal and external

frequencies.

D. Simulations of Mode-Locking in Front Propagation

The propagation of a reacting front has been simulated numerically for the oscillating

vortex chain by Cencini et al. [11] and by Abel et al. [9, 10]. The simulations assume

an autocatalytic (“burn”) reaction where the reactants are consumed, similar to a flame

consuming fuel. Those studies assume that in the absence of any fluid flow the reacting front

will propagate with a constant velocity v0, as discussed in subsection IIA. The numerical

algorithm presented in Ref. [11] combines a spreading reaction front with the oscillating

vortex chain flow of Eqns. 4 and 5. We have reproduced these simulations ourselves for

comparison with the experiments.

For the stationary vortex chain (b = 0), mixing between adjacent vortices is limited by

molecular diffusion. Therefore, the propagation of the front from one vortex to the next is

solely by a reaction-diffusion mechanism. However, within a vortex the front propagation

is dominated by advection. As the maximum flow velocity increases, the front velocity also

increases since the time to travel around a given vortex decreases. The result is a monotonic
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increase in the front velocity as the maximum flow velocity increases [11].

For an oscillating vortex chain (b 6= 0), mixing between vortices is chaotic. Cencini et

al. study the velocities of the propagating fronts as a function of the oscillation frequency for

a particular oscillation amplitude. Mode-locking behavior is found for particular ranges of

frequencies. Mode-locking in this system is defined as the front propagating an integer num-

ber N of wavelengths λ of the flow (2 vortex widths) in an integer number M of oscillation

periods τ . Consequently, the velocity vf for the mode-locked fronts is given by:

vf =
N

M

λ

τ
. (6)

Equation 6 can be rewritten as

vf =
N

M
λf (7)

or, non-dimensionally as:

ξ =
N

M
ν, (8)

where ξ ≡ vf/U .

For a (1,1) mode-lock (that is N = 1, M = 1), the shape of the reaction front repeats

every period of oscillation and is rigidly translated by λ, one wavelength of the flow. A

sequence of numerical images for a (1,1) mode-lock is shown in Fig. 2. For a (1,2) mode-

lock (Fig. 3), the shape of the front repeats every 2 drive periods. In this case, it also takes

two drive periods for the front to advance one wavelength of the flow.

A more rigorous test of mode-locking can be obtained by plotting the front velocity as

a function of the external frequency and comparing the results to the the predictions of

equation 8. This has been done by Cencini et al. for a particular oscillation amplitude (see

Fig. 11 in Ref. [11]). Clear mode-locking is found in these simulations for the (1,1), (1,2),

(1,4), and (1,6) locking branches, with front velocities in agreement with equation 8 for a

wide range of frequencies.

Note that mode-locking of the propagating front is inconsistent with the Fisher-

Kolmogorov prediction (Eq. 1) for reaction-diffusion systems, even with an enhanced diffu-

sion coefficient.
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FIG. 2: Simulation showing evidence for a (1,1) mode-lock. A snapshot of the reacting front is
taken at some intial time t0. Another snapshot is taken after each period τ of the oscillation. The
shape of the reacting front repeats every period and is rigidly translated by λ after a transient,
as expected for a (1,1) mode-lock. The parameters used in this simulation are b = 0.3, f = 0.5,
U = 1.0, and v0 = 0.2.

FIG. 3: Simulation showing evidence for a (1,2) mode-lock. The shape of the reacting front repeats
every other period and is rigidly translated by λ every two periods after a transient, as expected
for a (1,2) mode-lock. The parameters used in this simulation are b = 0.3, f = 1.0, U = 1.0, and
v0 = 0.2.
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FIG. 4: Schematic of the flow and experimental apparatus. (a) Exploded view of the magneto-
hydrodynamic forcing technique. The flow is an annular vortex chain bounded by two plexi-glass
rings (shown in black) with radii 6.1 and 8.3 cm. (b) Side view of the apparatus. A circular con-
tainer holds the fluid and the bounding rings. Below the container is the magnet assembly, which
is mounted coaxially with a motor.

III. EXPERIMENTAL TECHNIQUES

A. Apparatus and Flow

The alternating vortex chain – composed of 20 vortices (10 wavelengths) – is produced

using a magnetohydrodynamic technique [16, 25, 47, 48] shown in Fig. 4. A radial current

passes through a 2-mm thick solution and interacts with a spatially-varying magnetic field.

The magnetic field is produced by two concentric rings of magnets of alternating polarity,

where the polarity alternates both in the azimuthal as well as the radial direction. For a

radial current, magnetic forcing pushes the fluid azimuthally above the magnets, one way

above magnets with the north side up and the opposite way above magnets with the south

side up. Plexi-glass bounding rings of radius 6.1 cm and 8.3 cm form the boundaries of the

region of interest, which is an annulus for these experiments. By using the magnet array

and bounding rings shown in Fig. 4, the resulting flow is an annular chain of vortices. The

strength of the flow – characterized by the maximum flow velocity U – is varied by changing

the magnitude of the electrical current passing through the fluid. Unless otherwise stated,

U = 440 µm/s for all of the experiments.

The magnet array is mounted coaxially on a motor that can be programmed to move

with any arbitrary, input waveform. A stationary vortex chain is produced by having the

motor off. An oscillating vortex chain is produced by having the magnets oscillate with a

specified frequency f and amplitude B.
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The experimental flow differs from the model of Eqns. 4 and 5 in a few respects. First, the

model flow assumes free-slip rather than the no-slip boundary conditions that are present at

the bounding walls and bottom of the container. Second, there is a weak, secondary, three-

dimensional flow that slowly pumps fluid into and up through the center of each vortex [47].

The model equations assume a two-dimensional flow, whereas the secondary flow present

within the experiments makes the experimental flow weakly three-dimensional. Third, the

experimental vortex chain is wrapped around into an annulus; consequently, there are some

curvature effects that are absent in the model. Fourth, there are presumably some weak

flows that are induced by the chemical reaction itself, as has been predicted in previous

studies [49]. Our expectation is that these induced flows are significantly smaller than the

flows forced by the MHD technique.

B. Reaction

A variation of the Belousov-Zhabotinsky (BZ) reaction [50, 51] is used in the experiments

presented here. Rather than the standard ferroin-catalyzed BZ reaction, the ruthenium-

catalyzed BZ reaction is used. The Ru-catalyzed BZ reaction may be either oscillatory [52]

or excitable [32, 53], depending on the reactant concentrations. The oscillatory reaction

oscillates between the Ru2+ state, which is orange in color, and the Ru3+ state which is

green.

The excitable regime of the reaction is used in these experiments. The system begins

completely in the stable Ru2+ state. A Ru3+ pulse may then be triggered by placing a thin

(0.25 mm) silver wire into the solution for approximately ten seconds. The silver oxidizes

the Ru2+ in the vicinity of the wire to the Ru3+ state. This region of Ru3+ then triggers

the surrounding Ru2+ and so forth, resulting in the propagation of a Ru3+ front across

the system. The reaction propagates as a pulse rather than as a burn; the region behind

the chemical front returns to the Ru2+ state and may be re-triggered. (In fact, due to

recirculation in the flow, the region behind the front is repeatedly re-triggered after the

initial pulse passes.) The dynamics of the front edge of the pulse is assumed to be the same

as the dynamics of the leading edge of a burn front. Therefore, the excitable Ru-catalyzed

BZ reaction may be used to produce a propagating front in an advection-reaction-diffusion

system, as desired.
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Another advantage of the Ru-catalyzed BZ reaction is the fact that it is photosensitive

for both the oscillatory and excitable regimes [52]. The photosensitivity of the reaction

allows for the dynamics to be manipulated by light. For example, by shining sufficiently

intense blue light on the reaction, the oscillatory behavior can be stifled leaving the reaction

entirely in the Ru2+ state. Examples of both pattern formation [54] and mode-locking [45]

in a reaction-diffusion regime have been produced using photoinhibition for the oscillatory

regime of the reaction.

The ruthenium indicator used in these experiments comes in the [Ru(bpy)3]Cl2 · 6H2O

form. The Cl− ions inhibit the reaction and also decrease the photosensitivity; therefore,

the Cl− ions should be removed before the experiment is run. To remove the Cl− ions,

a single-replacement reaction is used [57]. The bromomalonic acid (BrMA) used in these

experiments is produced before each run by the following reaction [53]:

BrO−
3 + 2Br− + 3MA + 3H+ ­ 3BrMA + 3H2O. (9)

The reaction must be performed in a fume hood.

For most of the experiments in this paper, the initial concentrations are as follows:

[BrMA]=0.09 M, [H2SO4]=0.28 M, [BrO−
3 ]=0.16 M, [MA]=0.03 M, [Ru(bpy)2+

3 ]=2.7 mM.

The solution is initially orange in color and remains orange until a silver wire is placed in

the solution, triggering the pulse. For these experiments, the reaction-diffusion (no-flow)

front velocity is v0 = 52 µm/sec.

A variation of the Ru-catalyzed BZ reaction with enhanced photosensitivity is used for

experiments in which the chemical front propagates around the annulus more than once

(“wrap-around”). In order to do so, the tail of the reacting front is reduced back to the

Ru2+ (“erased”) using photoinhibition, which is further explained in the next section. To

increase the photosensitivity the sulfuric acid concentration [H2SO4] is decreased from 0.28

M to 0.22 M; all other chemical concentrations are the same as those mentioned above. It

should be noted that the more photosensitive combination could have been used for all of

the data runs. The wrap-around experiments were done last, however; consequently, most

of the data had already been obtained with the higher H2SO4 concentration.

More details about the reaction and the methods used to prepare the chemicals can be

found in Ref. [55].
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C. Illumination and Imaging Techniques

To exploit the photosensitivity of the Ru-catalyzed BZ reaction, a high-powered (205 W)

video projector is used to illuminate a pattern onto the system. The annular region of interest

is illuminated with red light which does not affect the reaction dynamics. Furthermore, the

Ru3+ state strongly absorbs light at 675.2 nm whereas the Ru2+ does not, so the use of red

light greatly improves image contrast. The rest of the circular container is illuminated with

blue and green light, which inhibits the reaction [52], thereby preventing any spurious fronts

from entering the region of interest.

Within the annular region, one to two vortices are also illuminated with blue and green

light to form a “blinding region.” Since the reaction is inhibited by blue light, the reaction

front cannot pass through the blinding region. Therefore, by triggering a chemical pulse

next to the blinding region, the chemical front can travel in only one direction around the

annulus. Then, instead of having only 10 vortices of data if the reaction front were to travel

in both directions and meet itself halfway around the annulus, the front traverses 18-19

vortices.

To obtain even more than 19 vortices of data, a wrap-around approach is used. This ap-

proach uses the enhanced photosensitivity discussed in the previous section and a dynamic

blinding region that follows the advancing chemical front. The blinding region is extended

to cover nearly half of the annulus while the other half is still illuminated with red light. A

chemical pulse is triggered within the red region, and as the front advances the blinding re-

gion follows it in a way such that the leading edge of the front always remains approximately

in the center of the red region. (The blinding region is always kept at least three vortices

away from the leading edge of the front.) As a result, the tail of the chemical pulse is erased

(the Ru3+ state is reduced back to the initial Ru2+ state) by the illumination, allowing the

front to propagate around the annulus multiple times.

Images of the propagating front are captured using a 12-bit, high resolution CCD camera.

Unless otherwise stated, the time-interval between images in all the experiments presented

here is 2.0 seconds. A red interference filter (676 nm), which only passes light from 674 nm

- 678 nm, is placed over the lens of the camera to improve image contrast. The Ru3+ state

strongly absorbs light at 675.2 nm and can therefore easily be distinguished from the Ru2+

state with this particular filter.
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FIG. 5: Propagation of a Ru3+ pulse for the stationary (b = 0) vortex chain. (a) Time series of
the propagating front; images are separated in time by 32 s. (b) Corresponding space-time plot,
obtained by stacking radially-summed and decurled images. The dashed line shows the average
velocity of the front.

D. Analysis

The velocity of the chemical front is determined from the sequence of images. The first

image taken is used as a background image and the intensity of each subsequent image is

subtracted from this background. The images are subtracted from the background since the

Ru3+ is dark due to the interference filter used. As a result, once subtracted, the Ru3+ front

appears white in the subtracted images.

Each of the subtracted annular images is “decurled” thereby displaying the annular vortex

chain as a linear vortex chain. The horizontal axis of the decurled images corresponds to

the azimuthal direction of the annulus and the vertical direction corresponds to the radial

direction. Since the region of interest is an annulus, if the front leaves the right edge of the

decurled image it will appear at the left edge and continue propagating to the right.

Each decurled image is then shifted by the same amount in the azimuthal direction such

that the front is triggered at θ = 0 for each run. The intensity of each image is summed in

the radial direction and stacked one on top of another to make a space-time plot, as shown

in Fig. 5b, for example. The velocity of the front is the inverse slope of the leading edge in

the space-time plot.
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FIG. 6: Experimental plot of the average front velocity vf as a function of the maximum flow veloc-
ity U for the stationary (b = 0) vortex chain; both velocities are normalized by the reaction-diffusion
(no flow) front velocity v0. The line of best fit has a functional form vf/v0 = 0.87(U/v0)0.62.

IV. EXPERIMENTAL RESULTS

A. Stationary Vortex Chain

The time evolution of the reacting front in the stationary vortex chain (b = 0) is shown in

Fig. 5. In the time-independent case, the front advances by three primary mechanisms: (1)

once initiated near a fixed point at the corner of a given vortex, the front is predominantly

advected around the perimeter of the vortex. (2) Once the front has reached the opposing

corner of the vortex, the front travels across the separatrix via reaction-diffusion and triggers

a reaction within the next vortex. (3) Having advected around the perimeter of a vortex,

the front also travels inward to the center of the vortex via reaction-diffusion. Advection

around the vortex (1) is rapid, while reaction (2) across the separatrix is slow, resulting in

speeding up and slowing down of the front within each vortex (seen as the “teeth” in the

spacetime plot, Fig. 5b). The process repeats itself every wavelength of the flow; the result

is a velocity that is constant over distances greater than a vortex width.

The front velocity vf increases monotonically with the maximum flow velocity U (Fig.

6). This can be explained from the fact that the time for a front to advect around a vortex

drops with increasing U. However, the relation is not linear. This is due to the fact that
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propagation from one vortex to the next is limited by the reaction-diffusion mechanism, since

there is no advection directly from one vortex to the next. Furthermore, there is a limit on

the values of U for which vf is even defined; as U grows too high, the reaction is extinguished

due to the increased shearing. The specifics of this limit have not been extensively studied

as of yet but have been qualitatively observed.

B. Mode-Locking in the Oscillating Vortex Chain

The behavior for the oscillating vortex chain (b 6= 0) (Figs. 7a, 8a and 9a) is dominated

by chaotic advection and can be quite different from the stationary case (Fig. 5a). The

stretching and folding that is characteristic of chaotic mixing of passive impurities [25, 26]

can be seen in the advection-reaction-diffusion images presented here. Evidence for mode-

locking can be seen by examining a time series of snapshots of the chemical front separated

by one period of oscillation. An example of mode-locking with (N,M) = (1,1) is shown in

Fig. 7a. Similar to the simulation shown in Fig. 2, the shape of the leading edge of the

front is repeated and rigidly translated by one wavelength every period of oscillation. The

corresponding space-time plot is shown in Fig. 7b. There is a very clear, constant velocity

throughout the duration of the run, consistent with the prediction of Eq. 8.

An example of a (1,2) mode-lock is shown in in Fig. 8a. Similar to the simulation shown

in Fig. 3, the shape of the leading edge is repeated and rigidly translated by one wavelength

every two periods. The corresponding space-time plot for this run is shown in Fig. 8b. Once

again, the leading edge of the front propagates at a constant velocity.

An example of an unlocked case is shown in Fig. 9a. The time series for this case does

not show the repeating translation seen in Figs. 7a or 8a. Furthermore, there is no clear,

single velocity for this frequency; the space-time plot (Fig. 9b) has many undulations and

the velocity is continually changing. It could be argued that this frequency may simply fall

on a locking branch that is inaccessible due to the fact that only twenty vortices are used.

However, comparison of this run with those at very close frequencies reveals no linear scaling

of the front velocity with frequency (see Eq. 8), another typical indication of mode-locking

that is absent.

To test predictions of mode-locking in the oscillating vortex chain, a particular amplitude

of oscillation is chosen (b = 0.69) and the non-dimensionalized front velocity ξ is plotted
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FIG. 7: Experimental evidence for a (1,1) mode-locked front in the oscillating vortex chain (ν =
0.2255 and b = 0.69). (a) A time series showing the propagation of the front. Each image is
separated in time by one oscillation period (τ = 190 s). The shape of the front repeats every
oscillation period and is rigidly translated by one wavelength (two vortices). (b) Corresponding
space-time plot. The dashed line shows the constant velocity of the front and agrees with equation
8.

FIG. 8: Experimental evidence for a (1,2) mode-locked front in the oscillating vortex chain (ν =
0.54 and b = 0.69). (a) A time series showing the propagation of the front. Each image is
separated in time by one oscillation period (τ = 80 s). The shape of the front repeats every other
oscillation period and is rigidly translated by one wavelength (two vortices) every two periods. (b)
Corresponding space-time plot. The dashed line shows the constant velocity of the front and agrees
with equation 8.
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FIG. 9: Experimental evidence for an unlocked front in the oscillating vortex chain (ν = 0.3296 and
b = 0.1725). (a) A time series showing the propagation of the front. Each image is separated in time
by one oscillation period (τ = 130 s). The shape of the front does not repeat. (b) Corresponding
space-time plot. There is no constant velocity that agrees with equation 8.

as a function of the non-dimensionalized frequency ν for this amplitude (Fig. 10). The

dashed lines correspond to the theoretical predictions of equation 8. The solid, horizontal

line corresponds to the stationary velocity (for b = 0) measured for the same value of U .

There are clearly many frequencies that mode-lock onto both the (1,1) and (1,2) locking

branches and a couple on the (1,5) locking branch. It should be noted that there are no

fitted parameters in this plot.

The plot of ξ versus ν shown in Fig. 10 does not capture the full advection-reaction-

diffusion problem. The maximum flow velocity U and the oscillation frequency f could both

be doubled, for instance, leaving the advective properties of the flow (represented by the

non-dimensional frequency ν) the same. However, it would take only half the time to achieve

the same amount of mixing, but the reaction time scale would remain unchanged. Conse-

quently, the balance between advection, reaction and diffusion would be altered, potentially

resulting in different dynamics. As an extreme example, for U →∞, the system becomes an

advection-diffusion system and the dynamics of the reaction is lost. For U → 0, the system

becomes a reaction-diffusion system and the effects of the fluid flows are lost and the front

will propagate at velocity v0.
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FIG. 10: Front propagation velocities for the oscillating vortex chain; b = 0.69. The velocity for
the stationary case (see Fig. 5) is denoted by the horizontal line. The dashed, diagonal lines
correspond to the predictions from equation 8 for mode-locked fronts with integers (N, M).

C. Arnol’d Tongues

Although the mode-locked front velocity is fully determined by the oscillation frequency,

whether the system mode-locks or not is also dependent upon the oscillation amplitude. As

the oscillation amplitude approaches zero, all front velocities will tend toward the stationary

velocity rather than the predicted, locked velocity. Therefore, the range of frequencies

that will mode-lock on a particular branch ought to decrease with decreasing oscillation

amplitude, resulting in Arnol’d tongue behavior.

Arnol’d tongues for our experiments are shown in Fig. 11 for the (1,1) and (1,2) locking

regimes. Several types of behavior are displayed within this plot. Most simply are the cases

where the front either mode-locks onto the (1,1) or (1,2) branches symbolized by ¤ and ◦,
respectively, or is completely unlocked (filled in diamonds). Near the edges of the tongues

the front may be “partially locked,” defined as the front being locked for 25-75 % of the total

run. These partially-locked cases are denoted by + and × for the (1,1) and (1,2) tongues,
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FIG. 11: Arnol’d tongues for the mode-locked regimes; ¤ and ◦ correspond to locking with (N,
M)=(1,1) and (1,2), respectively; 4 corresponds to dual-locked states; + and × denote partially-
locked runs; and solid diamond corresponds to unlocked fronts. The dotted and dashed curves
show roughly the boundaries of the (1,1) and (1,2) tongues, respectively.

respectively.

The mode-locking behavior shows a clear dependence upon the oscillation amplitude. As

the oscillation amplitude increases, the range of frequencies over which the system mode-

locks increases. Furthermore, as the oscillation amplitude decreases towards zero, the system

does not lock for any frequencies of oscillation, as expected. Specifically, no mode-locking

behavior is observed for amplitudes below b = 0.15.

D. Overlapping Arnol’d Tongues

The (1,1) and the (1,2) tongues overlap for a large range of amplitudes, denoted by

4 in Fig. 11. The overlap can also been seen in Fig. 10; specifically, the front velocity

ξ is not single-valued for all frequencies. Within this overlap region dual-locked behavior

occurs. The front velocity switches alternately (and erratically) between two different values,
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corresponding to the two different locking tongues. In these cases, both velocities are plotted

in Fig. 10.

To explore the switching behavior between the overlapping Arnol’d tongues the wrap-

around technique is used, allowing for the front to travel significantly farther than the 20

vortices available in one transit around the annulus. In addition to increasing the photo-

sensitivity (see Section III B), the maximum flow rate is tripled in order to allow for the

chemical front to travel around the annulus more than once before the chemicals are ex-

hausted. This is achieved by increasing the maximum flow velocity to U = 1.32 mm/sec,

rather than U = 440 µm/sec. Because of the faster flow, the interval between acquisition of

images is reduced to 1.0 s.

Unlocked, single-locked and dual-locked cases are all observed for wrap-around experi-

ments. A space-time plot for a dual-locked case is shown in Fig. 12. The front spontaneously

switches a total of 11 times between the (1,1) and (1,2) locking branches. Furthermore,

there are times when the front is simultaneously locked on both the (1,1) and (1,2) locking

branches. A sequence of images for this run (Fig. 13) shows this simultaneous dual-locking.

The front begins locked on the (1,2) tongue. However, along the outside of the annulus

(bottom of each image), a thin portion of the front is able to shoot ahead of the rest of the

front. This thin filament is the portion of the front that is mode-locked on the (1,1) branch,

evidenced by a fast front velocity that is measured to agree with Eq. 8. The portion of the

front that remains behind, however, follows the behavior corresponding to the (1,2) mode.

The result is the split in the front as shown in the topmost image. Ultimately, the filament

that shoots ahead burns its way into the vortex centers, so the (1,1) mode dominates in the

long term during these simultaneous regimes.

Note that on the second trip around the annulus the front does not follow the same

switching pattern as it does the first time (Fig. 12). Therefore, the cause of the switching is

not governed by the location within the apparatus.

There have been theoretical predictions of chaotic switching when there are overlapping

Arnol’d tongues [56]. However, to experimentally verify the chaotic nature of this switching,

many more switches are required within a single run. Therefore, in order to perform the

analysis, the reaction would have to be able to last several more hours in order to obtain the

necessary data. This could be achieved in future experiments by refreshing the reactants

during the run. In conjunction with the wrap-around illumination technique, arbitrarily
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FIG. 12: Space-time plot showing switching behavior between the (1,1) and (1,2) locking tongues;
ν = 0.2465 with U = 1.32 mm/sec and b = 0.80. The wrap-around technique is used in this
run. The dotted line shows regions for which the front propagates at a velocity corresponding to
mode-locking with (N, M)=(1,1). The dashed lines show mode-locking for (N, M) = (1,2).

long runs could be achieved.

V. DISCUSSION

The experimental results presented here agree with the previous numerical studies [11],

despite the differences between the model and experimental flows (see Sec. IIIA). In addition

to the differences in the flows, the simulations also assume a burn reaction whereas the

experiment produces a pulse reaction. Lastly, the mode-locking behavior is unaffected by
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FIG. 13: Sequence of images showing the simultaneous existence of mode-locking on the (1,1) and
(1,2) tongues as shown in Fig. 12 for ν = 0.2465 with U = 1.32 mm/sec and b = 0.80. The images
are separated in time by 5 s.

the wrap-around technique, even though the chemistry changes over time. From all of this,

we can conclude that the mode-locking phenomenon is quite robust.

The behavior shown in these experiments is similar to mode-locking and Arnol’d tongue

behavior in other systems. However, in other examples of mode-locking, there is typically a

well-defined, global, natural frequency of oscillation for the system. In those cases, it is this

internal frequency of oscillation that changes to lock onto the imposed, external forcing. In

the advection-reaction-diffusion experiments presented here, there is no well-defined, internal
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frequency of oscillation. The closest analog in this system to a natural, internal frequency

is the typical circulation frequency within a vortex. This frequency, though, is dependent

on the location within the vortex and diverges for tracers moving along the separatrices.

Furthermore, the circulation frequency is independent of whether the chemical front locks

or not. It is the reaction itself – the propagating front – that locks onto the external

frequency.

The experimental results illustrate the need to go beyond the Fisher-Kolmogorov theory

for describing front propagation in generalized advection-reaction-diffusion systems. Even

though transport in this system is diffusive with an enhanced diffusivity Deff , the results

presented here cannot be obtained from Eq. 1 with D0 replaced by Deff . Clearly the

cellular structure of the flow plays an important role in this process. We expect this to

be a general result – the presence of coherent structures in a flow should be expected to

have a significant effect on the motion of fronts. The importance of this result goes beyond

situations with laminar flows, as coherent structures are prevalent in a wide range of flows,

including turbulent flows that are often characterized by the formation of large, persistent

patches of vorticity.

The fact that the transport within the system is dominated by chaotic advection raises

another interesting question. For many of the mode-locked cases, trajectories of fluid ele-

ments within the flow are predominately chaotic. Despite the chaotic nature of the mixing,

the overall behavior of the spreading reaction when mode-locked is time-periodic as shown

in Figs. 7a and 8a. This might not seem surprising at first, since the velocity field itself is

periodic. But from a chemistry perspective, it is not the velocity field that is important but

rather the manner in which the chemicals are mixed, and the mixing is clearly chaotic in

this system.

Ultimately, a deeper theoretical understanding is needed to explain the locking behavior

seen in these experiments. In particular, the question arises as to whether some of the

theoretical tools used to describe chaotic mixing can be applied toward explaining the mode-

locking behavior.
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