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long-term transport
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Long-range transport is studied numerically in a time-
independent, three-dimensional (3D) fluid flow composed of
the superposition of two chains of alternating vortices, one
horizontal and the other vertical. Tracers in this flow follow
chaotic trajectories composed of correlated Lévy flights with
varying velocities. Locations of the chaotic regimes in the flow
are compared with recent theories of chaos in non-Beltrami
3D flows. Growth of the variance of a distribution of tracers
is divided into transient and long-term regimes, each with
different growth exponents.
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It is well known that a simple, ordered fluid flow can
have particle trajectories that are chaotic in the sense
that nearby trajectories separate exponentially in time.
[1] For a three-dimensional (3D) flow, chaotic trajectories
are possible even if the flow is time independent, as was
first explained by Arnol’d in 1965. [2] Arnol’d’s theory,
however, applies only to inviscid flows that satisfy the
Beltrami condition V x @ = A, where @ is the veloc-
ity field and A is a constant. The theory of Lagrangian
chaos in time-independent, 3D flows has been extended
recently to include flows that are not inviscid and that do
not satisfy the Beltrami condition. [3] This recent theory
proposes that for a wide range of 3D, time-independent
flows, Lagrangian chaos will be most commonly observed
in regions of the flow where the diagnostic W x &% is
largest.

Lagrangian chaos leads to significant enhancements in
long-range transport. The long-term behavior of the
transport has been studied extensively; specifically, in the
long-time limit, the variance of a distribution of tracers
typically grows as a power law: (r?) ~ ¢7. According
to the Central Limit Theorem, transport for ¢ — oo will
be normally diffusive (v = 1) if there are finite length
and time scales to the motions of the tracers. On the
other hand, superdiffusive (y > 1) transport is possible
if the trajectories are characterized by Lévy flights — long
distance “jumps ” (between regions with relatively little
motion) with a wide range of lengths and durations and
no finite scale. [4] Theories relating the flight statistics
to long-term transport assume that flights are indepen-
dent of each other (i.e., no correlations); furthermore, the
short-time (transient) behavior of the transport is often
neglected.

In this Rapid Communication, we present results of a
numerical study of Lagrangian chaos and its effects on

transient and long-term transport in a novel 3D, time-
independent, non-Beltrami fluid flow. This flow is ideal
for these studies due both to its simplicity and to its rich
transport properties. Simulations of motion in the flow
reveal Lévy flights and superdiffusive long-range trans-
port. Furthermore, the growth of the variance is typ-
ically described by two different values of v for differ-
ent time regimes. The transient behavior is likely to be
of significant importance for real systems, where issues
of practical importance may occur over time scales far
short of those needed to achieve the long-time limit com-
mon in theories of anomalous diffusion. We propose that
this short-time behavior can be explained by consider-
ing correlations between flights, which result in clusters
that must be considered when relating flight statistics to
long-range transport.
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FIG. 1. Diagram of fluid flow, consisting of the superposi-

tion of a horizontal chain of alternating vortices with a vertical
chain of alternating vortices.

The flow studied is the superposition of two chains of
alternating vortices (Fig. 1). The equations describing
the velocity field are

= —az—’\dcos(m;\m"r’))sin(%) - agﬁcos(%Tm)sin(g—:),
g = asin(Lij))cos(’%),

zZ= azsin(%Tx)cos(%).

1)

In these equations, a and as are the magnitudes of the
two superposed vortex chains, and d and d, are the width
and height (respectively) of the fluid layer. Throughout
the rest of the paper, all of the vortices are assumed to
have unity aspect ratio: d = d, = 1 and A = 2. Con-
sequently, the variables x, y and z are all scaled by the
vortex width/height. Furthermore, times are scaled by
a characteristic advective time d/a. The relative magni-
tude of the two vortex chains is denoted by the amplitude
ratio a/as.

Particle trajectories are determined numerically by in-
tegrating Eqgs. 1 using a fourth-order Runge-Kutta tech-
nique. The results are shown in Figs. 2 and 3 for
afas = 5.0 and 1.0, respectively.
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FIG. 2. Results of simulations for a/a2 = 5.0. (a) Poincaré
section at z = 0.0. (b) Diagnostic |6 x @)%, The white regions
correspond to large values of W x &|?, where the theory pre-
dicts chaotic regions. (c) Sample trapped trajectories from
ordered regions. Each curve is labelled with a roman numeral
corresponding to an island in Fig. (a). (d) Sample untrapped
trajectories from ordered regions. The differing velocities is
apparent from the slopes of these curves. (e) and (f) Sample
trajectories from chaotic region.

Poincaré sections are plotted in Figs. 2(a) and 3(a).
The points in these plots show the x-y coordinates of a
single tracer each time it passes through the mid-height
(z = 0) of the system. Periodic boundary conditions
have been used at the left and right. A single tracer in
the chaotic region visits the entire region, resulting in an
intricate stochastic web for both amplitude ratios with
empty “islands” corresponding to regions containing or-
dered trajectories. Figures 2(b) and 3(b) show the diag-
nostic proposed by Yannacopoulos et al., [3] as applied
to the flow in Eq. (1). It is apparent from the compar-
ison between Figs. (a) and (b) in both cases that the
diagnostic works quite well at identifying regions where
Lagrangian chaos is most likely to be found.

The x-coordinate of the particle trajectories (plotted
in Fig. 2(c) - (f) for a/as = 5.0) is the one most relevant
to discussions of long-range transport. Figures 2(c) and
(d) show ordered trajectories for tracers confined to the
appropriately-labelled islands in Fig. 2(a). The oscilla-
tory behavior is due to figure-8 motion between adjacent
horizontal vortices, with increasing number of loops for
islands near the centers for a/as = 5.0.

Of particular importance are the unbounded trajecto-
ries, such as those plotted in Fig. 2(d). Tracers under-
going these trajectories snake their way around and be-
tween the vortices, traveling very long distances (at least
several times longer than a vortex width) in short peri-

ods of time, with the average x-velocity determined by
the number of loops executed in each vortex before cross-
ing to the next. Tracers in the stochastic region (Fig. 2(e)
and (f)) temporarily stick to the outsides of the islands,
[5] mimicking the behavior of the corresponding ordered
trajectory while stuck. The sticking process results in
flights with a wide range of lengths and durations for
the chaotic trajectories. It is striking that flights of these
lengths are possible in this flow, even though there are no
jet regions. Several different flight velocities are possible,
depending on which island the tracer is sticking during
the flights. Similar behavior is observed for a/as = 1.0
(Fig. 3(c) and (d)), although trapping is not as significant

as for the case with a/as = 5.0.
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FIG. 3. Results of simulations for a/as = 1.0. (a) Poincaré
section at z = 0.0. (b) Diagnostic |6 x @|%. The white re-
gions correspond to large values of |V x &|?, where the theory
predicts chaotic regions. (c) and (d) Sample trajectories from
chaotic region.
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FIG. 4. Growth of the variance of a distribution. Fits (thin
solid lines) show the scaling regions; all fits are raised by 1 unit
to distinguish from the data. (a) Amplitude ratio a/a2 = 5.0;
slope is 0.85+0.20 from log(t) = 0 to 1.5 and is 1.6 £0.2 from
log(t) = 2.0 to 4.6. (b) a/az = 1.0; slope is 1.8 £+ 0.2 from
log(t) = 1.0 to 3.2 and 1.5 £+ 0.2 from log(t) = 3.2 to 5.2.

The variance of a spreading ensemble of tracers is plot-
ted in Figs. 4(a) and (b) for amplitude ratios 5.0 and 1.0,
respectively. In both cases, there is a transient regime
followed by a longer-term regime. For a/as = 5.0 (Fig.
(a)), the transient behavior is approximately diffusive
(v = 0.85 £ 0.20), while the long-term behavior is su-



perdiffusive (y = 1.6 £ 0.2). For a/az = 1.0 (Fig. (b)),
the transient behavior is almost ballistic (y = 1.8 +£0.2),
followed by a superdiffusive regime with v = 1.5+ 0.2.
To explain the transport behavior shown in Fig. 4, it
is necessary to determine the statistics of the flights and
trapping events. Theories [6] have been developed that
demonstrate that superdiffusion can occur if a tracer un-
dergoes flights whose lengths have diverging second mo-
ment: (L?) — oco. This condition — which defines Lévy
flights — is met if the probability distribution function
(PDF) for flight lengths has a power law tail p(L) ~ L™#
with g < 3. If the trapping time PDF has a finite sec-
ond moment and if the flights all have the same constant
speed, then the variance is predicted [6] to grow as

2,u <2
y=q4-p2<pu<3 (2)
Lpu>3

Since there are no jet regions in this flow, a tracer me-
anders around and between the vortices during a flight.
The fastest flights correspond to tracers that enter a vor-
tex at one corner, circle half-way around, and exit at
the opposite corner. The result is a snake-like trajec-
tory. For the smaller velocity flights, the tracer under-
goes an integral number of additional rotations within
each horizontal vortex before continuing on to the next
vortex. Identification of flights is facilitated by plotting
the z- and ¢- coordinates only when the tracer crosses
the center of a horizontal vortex, i.e., when it crosses
z = 0.0,1.0,2.0,... . The fastest flights will be revealed
as a continually increasing (or decreasing) sequence of
vortex centers; e.g., £ = 2,3,4,5,6,... . The next fastest
flights will have an extra loop in each vortex, which shows
up as two additional crossings of each vortex center; e.g.,
x = 2,3,3,3,4,4,4,5,5,5,... . Each flight is associated
with a direction and a speed, which is characterized by
the number of repeats of each vortex center crossing. A
flight is considered to have ended if either (a) the direc-
tion of motion changes; or (b) the number of repeats per
vortex changes.
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FIG. 5. Probability distribution functions (PDFs) for

flights. The filled circles show PDFs for individual flights,
while the open squares correspond to the PDF of lengths of
flight clusters. (a) a/a2 = 5.0; fitted slope is —3.4 £+ 0.2 for
0.4 < log(t) < 1.6 and is —2.3 £ 0.2 for 1.4 < log(t) < 3.4.
(b) a/az = 1.0; fitted slope is —2.6 &+ 0.2.

Logarithmic plots of the PDFs for flight length are

shown in Fig. 5 (filled circles). The PDFs for both am-
plitude ratios have algebraic tails with decay exponents
consistent with the definition of a Lévy flight: y = 2.3
and 2.6 + 0.2 for a/as; = 5.0 and 1.0, respectively. Trap-
ping duration PDFs (not shown) also have algebraic tails,
but with exponents v = 3.5 and 4.2 (£0.2) for ampli-
tude ratios of 5.0 and 1.0, respectively. These exponents
are both greater than 3; consequently, the trapping time
PDF's have finite second moment, and the prediction
in Eq. 2 should hold. Comparing the flight exponents
p from Fig. 5 and the superdiffusive exponents v from
Fig. 4, we find that the long-time behavior is consistent
with the predictions from Eq. 2.
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FIG. 6. Supporting data for a/az = 1.0. (a) Correlations
between flights; average length for next flight (n+1 — solid
line) and for following flight (n+2 — dashed line). The data
shows that a medium-to-long flight is likely to be followed by
another long flight in the same direction after a small motion
backward. (b) Scatter plot of flight length L and speed v.
The lower speed flights decay away for smaller lengths than
those with v = 0.65.

The transient behavior for a/as = 5.0 can be explained
from the framework of Eq. 2. Smaller length flights
for this amplitude ratio have a larger decay exponent;
p = 3.4 +£0.2, as seen in Fig. 5(a). Since p > 3 for
the small length flights, the PDF is not consistent with
Lévy scaling for small lengths (and, consequently, tran-
sient times), so the transport should be diffusive over
small timescales. This is consistent with the transient
growth exponent v = 0.85 + 0.20 in Fig. 4(a).

For a/as = 1.0, however, there is no kink in the PDF
for flight lengths (filled circles in Fig. 5(b)). To explain
the almost ballistic transport at short times in Fig. 4(b)
it is necessary to consider the fact that the flights are
not independent. In fact, there are significant correla-
tions between a flight and the subsequent two flights, as
shown in Fig. 6a for a/a, = 1.0. As shown by the solid
curve in this figure, a flight of length L,, in a particu-
lar direction is followed — on the average — by a flight
with a small average length (L, 1) in the opposite di-
rection. The dashed curve, however, shows that the next
flight (the second one after the original forward flight)
on the average returns back (and beyond) in the original
direction by an average (L,t2) of 10 vortex widths in the
initial direction.

Because of these correlations, flights tend to form clus-
ters with overall lengths that are frequently significantly



longer than individual flights. Clusters are determined
by the following algorithm: given a flight with a partic-
ular direction, if the next two flights add up to produce
a total jump of three or more vortex widths in the same
direction, then those two flights are combined with the
first to form a cluster. The following two flights are ana-
lyzed in the same manner, and the process continues with
more and more flights added to the cluster. A cluster is
considered to have ended as soon as a pair of flights is
found that — when added — do not continue the forward
motion of the tracer by at least 3 vortex widths.

PDFs of cluster lengths are displayed in Fig. 5 as
open squares. For a/ay; = 1.0 (Fig. 5b), clustering of
the smaller flights results in a reduction in the PDF at
small lengths and an increase at intermediate lengths.
The result is a smaller decay exponent for small lengths:
Metuster = 1.7£0.3 over this range. Considering the theo-
retical predictions in Eq. 2, this scaling is consistent with
the almost-ballistic growth of the variance (y = 2) seen as
a transient in Fig. 4(b). Clustering is not significant for
the very long flights, though, and the two PDFs match
up at the larger lengths.

Correlations are not as significant for a/az = 5.0.
There is a slightly increased probability that a flight will
be followed by another flight in the opposite direction.
The following flight, however, has an equivalent aver-
age magnitude in the direction of the original flight, so
the pair adds up — on the average — to zero. The open
squares in Fig. 5(a) show the PDF of cluster lengths for
a/as = 5.0. This PDF has almost exactly the same statis-
tics as for individual flights; consequently, clustering does
not play a significant role in this case.

The implication here is that the statistics of the flights
alone are not sufficient to determine the long-range trans-
port behavior if the flights have significant correlations.
An analysis based on flight clusters gives a better predic-
tion of the scaling behavior of the variance of a distribu-
tion.

There is another important deviation between the
models used in the theoretical predictions (Eq. 2) and
the current system. Whereas the theories [6] assume con-
stant velocity flights, in this system different flights have
different velocities. This fact is revealed in scatter plots
of flight length versus speed, as is shown in Fig. 6(b).
[7] A few dominant speeds are apparent for the shorter
length flights, each speed corresponding to sticking of
trajectories to a different island in the Poincaré sections
of Fig. 3. Fewer of the islands are able to maintain the
longer flights, however, evidenced by the dropping out
of some of the velocities as the flight length increases.
As seen in Fig. 6(b), flights with lengths greater than 50
vortex widths are dominated by a single flight velocity.
The implication of these results is that each island may
be associated with its own PDF for sticking and that, in
general, characterization of the flights with a single flight
length PDF may result in an incomplete description of
the phenomena. The success of the theories [6] in pre-
dicting the long-time behavior for this system stems from

the fact that the long flights are dominated by a single
velocity.

Experiments are currently in progress to test these re-
sults. In the experiments, the horizontal chain of vor-
tices is producd by a magnetohydrodynamic technique,
[8] while the vertical vortices are generated by thermal
convection from heating and cooling strips. Preliminary
results show trajectories that are qualitatively similar to
those from the simulations. More data is needed to make
quantitative comparisons, though. This will be the sub-
ject of a future article.
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