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A novel, three-dimensional, time-independent fluid flow is
presented in which passive tracers follow chaotic trajectories
composed of correlated Lévy flights with varying velocities.
The flow is the superposition of two chains of alternating vor-
tices, one horizontal and the other vertical. Long-range trans-
port is superdiffusive with a growth exponent that — for long
times — can be related to flight length statistics. An interme-
diate scaling regime is also found with a different exponent,
which can be explained by considering correlations between
the flights.
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It is well known that a simple, ordered fluid flow
can have particle trajectories that are chaotic in the
sense that nearby trajectories separate exponentially in
time. [1] There have been several studies of this phe-
nomena — referred to as Lagrangian chaos — in two-
dimensional (2D) time-periodic flows. [2,3] If the flow
is three-dimensional (3D), chaotic trajectories are pos-
sible even if the flow is time independent, as was first
explained by Arnol’d in 1965. [4] Arnol’d’s theory, how-
ever applies only to inviscid flows that satisfy the Bel-
trami condition V x @ = A&, where @ is the velocity field
and X is a constant. These conditions are very difficult
to achieve in a real fluid flow; consequently, there has
been limited interest in Lagrangian chaos in 3D, time-
independent flows. Recently, however, Yannacopoulos et
al. [5] proposed that Lagrangian chaos is possible in a
much wider variety of 3D, time-independent flows; most
significantly, the flow need not be invisicid, and the re-
quirement that the flow satisfy the Beltrami condition is
eliminated. This theory further proposes that chaos will
be most commonly observed in regions where the diag-
nostic |V x &2 is largest.

Lagrangian chaos leads to significant enhancements in
long-range transport. The variance of a distribution of
tracers typically grows as a power law: < r? >~ 7.
According to the Central Limit Theorem, the transport
will be normally diffusive (y = 1) if there are finite length
and time scales to the motions of the tracers. On the
other hand, superdiffusive (7 > 1) transport is possible
if the trajectories are characterized by Lévy flights — long
distance “jumps ” (between regions with relatively little
motion) with a wide range of lengths and durations and
no finite scale. [6] Lévy flights due to Lagrangian chaos
have been found experimentally [7] in a 2D flow with well-
defined jet regions (regions with open flow) that carry

tracers long distances before they stick to vortex islands.

In this letter, we present a mnovel model of
an experimentally-realizeable flow that illustrates La-
grangian chaos in a 3D, time-independent flow that does
not satisfy the Beltrami condition. We consider this
model flow to be ideal for this type of study due both to
its simplicity and to its rich transport properties, which
will be illustrated in this letter. Numerical simulations
of motion in this model reveal Lévy flights and superdif-
fusive long-range transport even though there are no jet
regions in the flow (the flow is composed entirely of recir-
culating zones). Furthermore, we find conditions where
the growth of the variance is described by two different
values of v for different time regimes. The shorter time
scaling behavior — which is usually not considered the-
oretically — is likely to be of significant importance for
real systems, where issues of practical importance may
occur over time scales far short of those needed to achieve
the long-time limit common in theories of anomalous dif-
fusion. We propose that this short-time behavior can
be explained by considering correlations between flights,
which result in clusters that must be considered when
relating flight statistics to long-range transport.
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FIG. 1. Diagram of fluid flow, consisting of the superposi-

tion of a horizontal chain of alternating vortices with a vertical
chain of alternating vortices.

The flow studied is the superposition of two chains of
alternating vortices (Fig. 1). The equations describing
the velocity field are

&= —a%cos(w)sm(%’) .
—ay F-cos(3E)sin(ZZ)

= asin(i%(wjo'm)cos(%) ,

Z= azsin(z%)cos(g—j) .

In these equations, a and as are the magnitudes of the
two superposed vortex chains, and d and d» are the height
and width (respectively) of the fluid layer. Through-
out the rest of the paper, all lengths are scaled by the
vortex width d and times are scaled by a characteristic



turnover time d/a. The relative magnitude of the two
vortex chains is denoted by the amplitude ratio a/as.
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FIG. 2. Results of simulations for a/as = 5.0. (a) Poincaré
section at z = 0.0. (b) Diagnostic |V x&|?. The white regions
correspond to large values of |6 x @J|?, where the theory pre-
dicts chaotic regions. (c) Sample trapped trajectories from
ordered regions. Each curve is labelled with a roman numeral
corresponding to an island in Fig. (a). (d) Sample untrapped
trajectories from ordered regions. The differing velocities is
apparent from the slopes of these curves. (e) and (f) Sample
trajectories from chaotic region.

Particle trajectories are determined numerically by in-
tegrating these equations using a fourth-order Runge-
Kutta technique. The results are shown in Figs. 2 and 3
for a/a; = 5.0 and 1.0, respectively.

Poincaré sections are plotted in Figs. 2(a) and 3(a).
The points in these plots show the x-y coordinates of a
single tracer each time it passes through the mid-height
(z = 0) of the system. Periodic boundary conditions
have been used at the left and right. A single tracer
in the chaotic region visits the entire region, resulting
in an intricate stochastic web for both amplitude ratios
with empty “islands” corresponding to regions contain-
ing ordered trajectories. Figures 2(b) and 3(b) show the
diagnostic proposed by Yannacopoulos et al., as applied
to the flow in Eq. (1). It is apparent from the compar-
ison between Figs. (a) and (b) in both cases that the
diagnostic works quite well at identifying regions where
Lagrangian chaos is most likely to be found.

The x-coordinate of the particle trajectories (plotted
in Figs. 2 and 3, (¢) - (f)) is the one most relevant to dis-
cussions of long-range transport. Figures (c) and (d) in
both cases show ordered trajectories for tracers confined
to the appropriately-labelled islands in Fig. (a). The
oscillatory behavior is due to figure-8 motion between

adjacent horizontal vortices, with increasing number of
loops for islands near the centers for a/as = 5.0.

Of particular importance are the unbounded trajecto-
ries, such as those plotted in (d) of Figs. 2 and 3. Tracers
undergoing these trajectories travel a very long distance
(at least several times longer than a vortex width) in a
short period of time, with the average x-velocity deter-
mined by the number of loops executed in each vortex
before crossing to the next. Tracers in the stochastic re-
gion (Figs. (e) and (f)) temporarily stick to the outsides
of the islands, [8] mimicking the behavior of the corre-
sponding ordered trajectory while stuck. The sticking
process results in flights with a wide range of lengths and
durations for all of the chaotic trajectories. It is strik-
ing that flights of these lengths are possible in this flow,
even though there are no jet regions. Several different
flight velocities are possible, depending on which island
the tracer is sticking during the flights.
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FIG. 3. Results of simulations for a/as = 1.0. (a) Poincaré
section at z = 0.0. (b) Diagnostic W x@|2. The white regions
correspond to large values of |V x &|?, where the theory pre-
dicts chaotic regions. (c) Sample trapped trajectories from
ordered regions. Each curve is labelled with a roman numeral
corresponding to an island in Fig. (a). (d) Sample untrapped
trajectories from ordered regions. (e) and (f) Sample trajec-
tories from chaotic region.

The variance of a spreading ensemble of tracers is plot-
ted in Figs. 4(a) and (b) for amplitude ratios 5.0 and 1.0,
respectively. Superdiffusive transport is evident in both
cases. However, whereas the case with a/as = 5.0 is char-
acterized by a consistent scaling exponent v = 1.6 £0.1
for 2-1/2 orders of magnitude, the case with a/as = 1.0
has two well-defined scaling regions: v = 1.8 £ 0.1 for
t < 1600 (in units of d/a) and v = 1.5+ 0.1 for ¢ > 1600.

Statistics relating to the flights and trapping events
are shown in Figs. 5 and 6 for amplitude ratios 5.0 and



1.0, respectively. Flights are identified from the numeri-
cal data by analyzing crossings of the separatrices of the
horizontal vortices. Each flight has a velocity defined
as distance travelled per unit time. When considering
separatrix crossings, a particular velocity can easily be
characterized by the number of repeated crossings of a
particular separatrix before the tracer continues on to
the next one. A flight is considered to end if the mag-
nitude of the velocity changes or if the tracer reverses
direction.
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FIG. 4. Growth of the variance of a distribution. Fits (thin
solid lines) show the scaling regions; all fits are raised by 1 unit
to distinguish from the data. (a) Amplitude ratio a/a2 = 5.0;
slope is 1.6 £ 0.1 from log(t) = 2.0 to 4.6. (b) a/az = 1.0;
slope is 1.8 £ 0.1 from log(t) = 1.0 to 3.2 and 1.5 £ 0.1 from
log(t) = 3.2 to 5.2.
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FIG. 5. Statistics for flights and trapping events for ampli-
tude ratio a/as = 5.0. (a) Probability distribution function
(PDF) for flight length (filled circles), along with best fit;
slope = —2.2+0.3. The open squares correspond to the PDF
of lengths of flight clusters. (b) PDF for trapping durations,
along with best fit; slope = —3.5+0.2; (c) Scatter plot of flight
length L and speed v. (d) Correlations between flights; aver-
age length for next flight (n+1 — solid line) and for following
flight (n+2 — dashed line).

Plots of the probability distribution functions (PDFs)
for flight length are shown in part (a) of Figs. 5 and
6 (filled circles). The PDFs have algebraic tails, indi-
cating divergence of the second moment of the distribu-

tion: < L? >— oo and < T? >— oo, consistent with
the definition of a Lévy flight. Specifically, the flight
lengths scale as p(L) ~ L™#L with pr = 2.2 +0.3 and
2.6 + 0.3 for amplitude ratios 5.0 and 1.0, respectively.
(The flight durations — not shown — scale as p(T') ~ T~ #T
with ur = 2.8 £ 0.2 and 3.0 £ 0.2 for ratios 5.0 and 1.0,
respectively.)

Trapping duration PDFs (Figs. 5b and 6b) also have
algebraic tails, but with exponents v = 3.5 and 4.2 (+0.2)
for amplitude ratios of 5.0 and 1.0, respectively. These
exponents are both greater than 3; consequently, the
trapping durations both have finite second moment and
are therefore not described as Lévy distributions.

Theories have been developed that relate the growth
of the variance to flight and trap statistics. In particular,
detailed predictions have been made [9] for the case where
flights all have the same constant velocity. In the regime
where the trapping exponent v > 3 (as is the case here),
the variance is predicted to grow as < z? >~ t7 with
y=2forupy<2,y=4—pfor2<pu<3andy=1for
u > 3. In the data presented here, for both amplitude
ratios the long time behavior of the growth exponent ~y
is consistent with these predictions.
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FIG. 6. Statistics for flights and trapping events for ampli-
tude ratio a/as = 1.0. (a) Probability distribution function
(PDF) for flight length (filled circles), along with best fit;
slope = —2.6 £0.3. The open squares correspond to the PDF
of lengths of flight clusters. (b) PDF for trapping durations,
along with best fit; slope = —4.2+0.2; (c) Scatter plot of flight
length L and speed v. (d) Correlations between flights; aver-
age length for next flight (n+1 — solid line) and for following
flight (n+2 — dashed line).

Despite the success of the theory in relating the long-
time scaling of the variance with the flight statistics,
there are some important deviations between the mod-
els used in those theories and the current system. First,
whereas the theories [9] assume constant velocity flights,
in this system different flights have different velocities.
This fact is revealed in scatter plots of flight length versus



speed, as is shown in Figs. 5¢ and 6¢c. A few dominant
speeds are apparent for the shorter length flights, each
speed corresponding to sticking of trajectories to a differ-
ent island in the Poincaré sections of Figs. 2 and 3. Fewer
of the islands are able to maintain the longer flights, how-
ever, evidenced by the dropping out of some of the ve-
locities as the flight length increases. For the a/as = 1.0
case in particular (Fig. 6c¢), flights with lengths greater
than 50 vortex widths are dominated by a single flight
velocity. The implication of these results is that each
island may be associated with its own PDF for sticking
and that, in general, characterization of the flights with a
single flight length PDF may result in an incomplete de-
scription of the phenomena. The success of the theories
[9] in predicting the long-time behavior for this system
stems from the fact that the long flights are dominated
by a single velocity.

Another deviation from the standard theoretical mod-
els stems from the fact that the flights observed in these
simulations are not independent. In fact, there are sig-
nificant correlations between a flight and the subsequent
two flights, as shown in Figs. 5d and 6d. For an ampli-
tude ratio of 5.0 (Fig. 5d), there is an increased proba-
bility that a flight will be followed by another flight in
the opposite direction, as shown by the dashed line. The
following flight, however, has an equivalent average mag-
nitude in the direction of the original (L,) flight. For
an amplitude ratio of 1.0 (Fig. 6d), however, there is a
stronger correlation with flights in the same direction for
the second flight than for flights in the opposite direction
for the next flight. The result is that flights tend to clus-
ter for an amplitude ratio of 1.0, with the clusters having
a larger overall length than the individual flights.

The PDFs of the lengths of flight clusters are denoted
by open squares in the plots of the flight length PDFs
(Figs. 5a and 6a). Whereas the statistics for the clusters
are the same as for the individual flights for a/as = 5.0
(Fig. 5a), there is a significant difference between the
flight and cluster length PDFs for a/as = 1.0 (Fig. 6a).
For t < 1000 (log(t) < 3), the cluster PDF decays with
a significantly smaller exponent (1.6 &+ 0.3), then drops
down for larger t, following the same scaling for the larger
lengths. The slow drop-off for ¢ < 10% explains the almost
ballistic (y near 2) growth of the variance for ¢ < 102 in
Fig. 4b.

The implication here is that the statistics of the flights
alone are not sufficient to determine the long-range trans-
port behavior if the flights have significant correlations.
An analysis based on flight clusters gives a better predic-
tion of the scaling behavior of the variance of a distribu-
tion.

Experiments are currently in progress to test these re-
sults. In the experiments, the horizontal chain of vor-
tices is producd by a magnetohydrodynamic technique,
[10] while the vertical vortices are generated by thermal
convection from heating and cooling strips. Preliminary
results show trajectories that are qualitatively similar to
those from the simulations. More data is needed to make

quantitative comparisons, though. This will be the sub-
ject of a future article.
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