NOTE: In this notebook I use thestats
submodule of scipy
for all statistics functions, including generation of random numbers. There are other modules with some overlapping functionality, e.g., the regular python random
module, and the np.random
module, but I do not use them here. The stats
submodule includes tools for a large number of distributions, it includes a large and growing set of statistical functions, and there is a unified class structure. In addition, potential namespace issues are minimized. See https://docs.scipy.org/doc/scipy/reference/stats.html.
Marty Ligare, August 2020
Modified by Tom Solomon, February 2021
Modified by Ned Ladd, January 2022 to remove np.random references in favor of stats.randint.rvs
import numpy as np
from scipy import stats
import matplotlib as mpl
import matplotlib.pyplot as plt
# Following is an Ipython magic command that puts figures in notebook.
%matplotlib notebook
# M.L. modifications of matplotlib defaults
# Changes can also be put in matplotlibrc file,
# or effected using mpl.rcParams[]
mpl.style.use('classic')
plt.rc('figure', figsize = (6, 4.5)) # Reduces overall size of figures
plt.rc('axes', labelsize=16, titlesize=14)
plt.rc('figure', autolayout = True) # Adjusts supblot parameters for new size
If you want to generate just one random integer, here is a way to do it. You have to specify a "low" and "high" for the range; i.e., you want a random integer between "low" and "high". Note that you have to add one to the "high" limit.
This example pulls a random integer between 3 and 7. Execute the cell a few times to get a feel for it.
low = 3
high = 7
stats.randint.rvs(low,high+1)
It is more likely that you will want to get a full array of integers in one fell swoop. Here is how to do that.
# Generate n integers between low and high:
low = -3
high = 6
n = 100
# or equivalently:
# loq, high, n = (-3, 6, 100)
stats.randint.rvs(low, high+1, size=n)
# Sample n random numbers in interval [0.0,1.0]:
n = 10
stats.uniform.rvs(size=n) # "uniform" in the command indicates all values are equally likely
# Or, if you need a uniform distribution within a different interval
# you can specify the lower bound of the interval, and the range
#
low = 2
rng = 7
stats.uniform.rvs(low,rng,size=10) # this command will produce 10 random values in the interval [2.0,9.0]
Sample $n$ random numbers from the normal distribution with mean $\mu$, standard deviation $\sigma$, and pdf of Eq.(2.4) of Hughes & Hase: \begin{equation} p(x) = \frac{1}{\sigma\sqrt{2\pi}}\exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] \end{equation}
# Sampling from normal distribution
n = 10
mean = 10.
sigma = 2.
stats.norm.rvs(mean, sigma, size=n) # "norm" in the command indicates a "normal" or "Gaussian" distribution
plt.figure()
x = np.linspace(mean-3.*sigma, mean+3.*sigma,200) # make an array of 200 evenly spaced values, starting with
# mean-3*sigma = 4 and going to mean+3*sigma = 10
y = stats.norm.pdf(x, mean, sigma) # determine the value of the pdf at each of the points in 'x'
plt.title("pdf of normal distribution")
plt.xlabel("$x$")
plt.ylabel("$p(x)$")
plt.grid()
plt.plot(x, y);
plt.figure()
x = np.linspace(mean-3.*sigma, mean+3.*sigma, 200) # don't really need to do this again....
y = stats.norm.cdf(x, mean, sigma)
plt.title("cdf of normal distribution")
plt.xlabel("$x$")
plt.ylabel("$\int_{-\infty}^x p(x^\prime)\, dx^\prime$")
plt.grid()
plt.plot(x, y);
Sample $n$ random numbers from the Poisson distribution with average count $\overline{N}$, and probability distibution given by Eq.(3.1) of Hughes & Hase: \begin{equation} p(N;\overline{N}) = \frac{\exp\left(-\overline{N}\right)\overline{N}^N}{N!} \end{equation} The standard deviation of the Poisson distribution is given by $$ \sigma = \sqrt{\overline{N}}. $$
# Sampling from a Poisson distribution
n = 1000
mean = 2
stats.poisson.rvs(mean, size=n)
np.mean(_) # The underscore "_" is similar to Mathematicas "%"
# It refers to the output of the previously executed cell
np.std(__) # Notice the double underscore "__"
np.sqrt(mean)
plt.figure()
x = np.linspace(0, 12, 13)
y = stats.poisson.pmf(x, mean)
plt.title("pmf of Poisson distribution")
plt.xlabel("$n$")
plt.ylabel("$p(n)$")
plt.grid()
plt.axhline(0)
plt.scatter(x, y);
plt.figure()
x = np.linspace(0, 12, 13)
y = stats.poisson.cdf(x, mean)
plt.title("cdf of Poisson distribution")
plt.xlabel("$x$")
plt.ylabel("$C_{DF}$")
plt.xlim(-1, 13)
plt.grid()
plt.axhline(0)
plt.scatter(x, y);
Consider $n$ trials, with probability of success $p$ in each trial. The array below is the number successes in each of $size$ trials.
# Sampling from a binomial distribution
n = 2
p = 0.4
stats.binom.rvs(n, p, size=100)
np.mean(_)
The probablity of getting $x$ successes is given by the probability mass function (pmf). This is analogous to the continous pdf (and it's called the PDF in Mathematica). As an example, the probability of 2 successes in 3 trials with a probability of success in each trial of 0.4 is 29%:
n, s, p = (3, 2, 0.4)
stats.binom.pmf(s, n, p)
plt.figure()
n = 5
x = np.linspace(0, n, n+1)
y = stats.binom.pmf(x, n, p)
plt.title("pmf ($\sim$pdf) of binom. dist.; $n=5$, $p = 0.4$")
plt.xlabel("$n$")
plt.ylabel("probability of $n$ successes")
plt.grid()
plt.axhline(0)
plt.scatter(x, y);
plt.figure()
n = 5
x = np.linspace(0, n, n+1)
y = stats.binom.cdf(x, n, p)
plt.title("cdf of binomial dist.; $n=5$, $p = 0.4$")
plt.xlabel("$n$")
plt.ylabel("cdf")
plt.grid()
plt.axhline(0)
plt.scatter(x, y);
n = 100
mean = 10.
sigma = 2.
data = stats.norm.rvs(mean, sigma, size=n)
NOTE: plt.hist
plots the histogram, and ouputs the binned data
plt.figure()
nbins = 6
low = mean - 3*sigma
high = mean + 3*sigma
plt.xlabel("value")
plt.ylabel("occurences")
plt.title("Histogram; equal sized bins")
out = plt.hist(data, nbins, [low,high])
out[0],out[1] # occurrences and bin boundaries
Again, plt.hist
outputs the binned data and plots the histogram.
plt.figure()
bins = [4, 7, 8, 10, 13, 16]
plt.xlabel("value")
plt.ylabel("occurences")
plt.title("Histogram; specified (nonuniform) bins")
out = plt.hist(data, bins)
out[0],out[1] # occurrences and bin boundaries
version_information
is from J.R. Johansson (jrjohansson at gmail.com); see Introduction to scientific computing with Python for more information and instructions for package installation.
version_information
is installed on the linux network at Bucknell
%load_ext version_information
version_information numpy, scipy, matplotlib