Pendulum problem

In [1]:
import numpy as np

Data

Data for pendulum swings:

  • Standard deviation for any set of timing measurements $= 0.04\, \mbox{s}$
  • Experiment A: 12 sets of 10 swings; average time for 10 swings $T_{10} = 28.39\, \mbox{s}$
  • Experiment B: 1 set of 120 swings; time for 120 swings $T_{120} = 340.61\, \mbox{s}$

Period from Experiment A:

The standard error (standard deviation of the mean) for the time for 10 swings is $$ \alpha = \frac{\sigma}{\sqrt{N}} = \frac{0.04}{\sqrt{12}} $$ The time for one swing is the time for 10 swings divided by 10: \begin{eqnarray*} T_{1} &=& \frac{T_{10}}{10}\\ &=& \frac{28.39 \pm \frac{0.04}{\sqrt{12}}}{10}\\ &=& 2.839 \pm \frac{0.04}{10\sqrt{12}}\\ &=& 2.839 \pm 0.001155 \end{eqnarray*} The presentation form of this result is $$ T_1 = 2.839\pm 0.001\, \mbox{s}. $$

In [2]:
t10 = 28.39
alpha10 = 0.04/np.sqrt(12)
t1 = t10/10
alpha1 = alpha10/10

print('T1 =',t1,'+/-',alpha1)
T1 = 2.839 +/- 0.0011547005383792516

Period from Experiment B:

The standard error (standard deviation of the mean) for the time for 120 swings is $$ \alpha = \frac{\sigma}{\sqrt{N}} = \frac{0.04}{\sqrt{1}} $$ The time for one swing is the time for 120 swings divided by 120: \begin{eqnarray*} T_{1} &=& \frac{T_{120}}{120}\\ &=& \frac{340.61 \pm \frac{0.04}{1}}{120}\\ &=& 2.838417 \pm \frac{0.04}{120\sqrt{1}}\\ &=& 2.838417 \pm 0.000333 \end{eqnarray*} The presentation form of this result is $$ T_1 = 2.8384\pm 0.0003\, \mbox{s}. $$

In [3]:
t120 = 340.61
alpha120 = 0.04/np.sqrt(1)
t1 = t120/120
alpha1 = alpha120/120

print('T1 =',t1,'+/-',alpha1)
T1 = 2.838416666666667 +/- 0.0003333333333333333
In [ ]: