Lab 19

Numerical Determination of
Energy Levels

Continuing Objectives

6. Be able to make a good graph, either in your notebook or with a computer, including
labels, scales, units, dependent, and independent variables.

9. Use a computer to simulate physical systems using numerical methods.

Introduction

Quantum mechanics predicts that the allowable energy levels in any bound system
are quantized. A particle is said to be bound in a region if, for a given energy E of
the particle, the total energy E (kinetic 4+ potential) is greater than the potential
energy U(x) in that region, and that region is surrounded by regions where the total
energy is less than the potential energy (see Figure 19.1). The quantized energies can
be determined by finding the energies F for which (i) the wavefunction approaches 0
as x approaches +o0o; and (ii) the wavefunction satisfies the Schrodinger equation,

h? d*y(x)

2m  dx?
Eq. (19.1) is the time-independent, one-dimensional, non-relativistic Schrodinger
equation, where U(x) is a potential energy function depending only on x. Solutions
of this equation are functions 1(z) that satisfy the equation and obey the appropriate
boundary conditions.

+[E - U()|t(z) =0. (19.1)

To see what form the boundary conditions might take, let us consider the physical
interpretation of ¢(z). The wavefunction ¥ (x) is a quantum mechanical amplitude.
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Figure 19.1: The potential energy function for a harmonic oscillator.

Therefore, the square of 1(x) is related to probability; |(z)|*dz is the probability
that the particle described by () is located between z and x+dz. Since the particle
must be somewhere, we must have

/Z (2)[? de = 1. (19.2)

Eq. (19.2) is called a normalization condition. For our problem, this condition means
that we accept only those solutions that do not become infinite as * — +o0.

One of the nice things about a numerical method like the one we will use in this
lab is that it can be applied to any system with any potential, not just the “easy”
examples. For the first part of this lab, we will study a harmonic oscillator (the
quantum version of a mass on a spring), with potential energy given by

U(z) = ;KxQ, (19.3)

(see Figure 19.1). Here, K is the spring constant.

Calculation of Wavefunctions

We first rewrite Eq. (19.1), multiplying and dividing by ¢? in the first term:

h*c? d*i)(x)

o5 B Ul@)]e(a) = 0. (19.4)

Then we solve for %ﬁ, putting in the particular potential energy function we're in-

terested in: dzw - .
me 9
S (E _ Ku ) ¥. (19.5)
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We will use units of electron volts (eV) and nanometers (nm), and study the motion
of an electron in this potential. Therefore

mc® =511 x 103 eV

and
fic = 197eV - nm.

It will be useful to write the energies in terms of hwy, where wy = (/K /m is the
classical frequency of the harmonic oscillator. Notice that

| K

Next, for finding values of 1(x) at equal increments of x (i.e., x = 0, Az, 2Ax, 3Axz,

..) we will use the same algorithm that was introduced in Chapter 1 of the PHYS
211 Supplementary Reading pamphlet, and used in PHYS 211 lab in Experiment 6,
Numerical Solution: Air Drag on a Falling Object. In Experiment 6 we determined
successively t,y(t),v,(t) (and a,(t)) by using

thew = toa + Af, (19.7)
Tnew = Told T Vold Atv (198)
and Unew = Uold T Qold At. (199)

Similarly we determine in today’s lab in steps of Az successively z, ¥(z), ¢'(x),
and 1" (x) where we use the notation ¢’ as shorthand for the first derivative di/dz,
and 1" for the second derivative d?y/dx?. Analogous to Egs. (19.7)-(19.9) we use
the following set of equations

P(r + Ax) = P(x) + Az (), (19.10)
and
V(a + Ax) ~ ' (x) + Az g (2). (19.11)

And rewriting the Schrodinger Equation gives,

" __Q(mcz) _1 l,Q T
W) =~ (B - 3Ka*) w(o). (19.12)

According to this algorithm, if we know ¢ and v’ at one position z, then we can
extrapolate 1 to a slightly different position, z + Az. In this lab, you will choose an
initial F value and use Egs. (19.10)—(19.12) to calculate () in steps of Ax.
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Getting Started

For a symmetric potential energy function such as that shown in Figure 19.1, there
are two possible types of wavefunctions: odd and even. For even functions, the value
of ¢ at & = 0 can be chosen to be 1 (i.e., ¥(0) = 1) and we have ¢'(0) = 0. (Why?).
For odd functions, ¢(0) = 0. Since for our purposes the value of ¢’ is arbitrary, we
can choose 1'(0) = 1 for odd functions. To summarize, we have

Even Odd
Functions Functions
P(0) =1 ¥(0) =0
v'(0) =0 w0 =1

Once 9(0) and 9'(0) are chosen, the basic algorithm, Eqgs. (19.12)—(19.11), gives
Y(Az), ¥(2Ax), Y(3Ax), ete.

Criterion for a Well-Behaved Wavefunction

Only if E takes on certain well-defined values will the curve of ¥ (z) vs. x approach
zero as x becomes large. If ¢(x) starts to “blow up” (i.e., tends to values of +00) for
large values of x, you can stop your numerical integration and try a new value of E.

However, since you are doing a numerical calculation, no matter how accurately
you find F, your wavefunction will eventually blow up. Thus the goal is to find two
slightly different values of E, one of which makes ¢ approach +o0o and one of which
makes 1) approach —oo. The true E will then be some place between these two values.
This method is called the “shooting method” because you launch the wave function
with better and better initial conditions until you come close to hitting your target.

Procedure

1. We will use for the K of the harmonic oscillator K = 3 eV /nm?.

2. Open an Excel template file for this lab, as follows. Navigate to the
PHYS211_212 Lab folder, open the folder 212Lab and therein open the folder
labeled Numerical Determination of Energy Levels
Double-click on numericalELevels_HarmonicOsci_template.xls
and Save As to your network space.

3. This template should help you to concentrate on the important aspects of this
lab. Note that all constants (i.e. variables which are independent of z) are
defined at the top (yellow cells). Fill in the yellow boxes. We will use Az =
0.003. When you put in a value in cell B9, look at what happens to the values
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in the z-column (cells A18 and down). For cells B10 and B11, begin with the
even case, that means ¢ (0) = 1 and ¢’(0) = 0. Note that cells B17 and C17
change appropriately. Finally, put in a trial value of £ = 0.1eV.

4. Now, enter Egs. (19.10)—(19.12) into the green cell, the blue cell, and the purple
cell. Be sure to use absolute references to refer to any values that you filled in
from the yellow cells above. All of the variables in the yellow cells also have
names associated with them, which you can view in the top left corner of the
main Excel ribbon when you click on a given cell. After you enter your formulas
into the colored cells, you'll need to copy and paste your formulas into the
columns beneath the colored cells. You can achieve this for example by clicking
on B18 and then moving the cursor to the bottom right corner of the cell until
the white + turns into a black thin 4, then double click.

5. Verify that your first four lines of your Excel table match the following table.
If not, please call your instructor or TA over for assistance.

o) [ d@) | ¥@) [ ¢'(@@) |
0.000 1 0 -2.63340978
0.003 1 -0.00790023 | -2.63305427

0.006 || 0.9999763 | -0.01579939 | -2.63192535
0.009 || 0.9999289 | -0.02369517 | -2.63002318

6. The graph should automatically plot. Once your Excel sheet is working prop-
erly, write down in your notebook the Excel versions of the formulas you typed
into the colored cells.

7. Now you are ready to search for the first energy level. Look at the graph for
E =0.1eV, then try £ =0.2eV, F = 0.3eV, etc., until you see the asymptotic
behavior of the wave function switch from blowing up to 400 to blowing up
(down?) to —oo. Note those two values of energy in your notebook.

8. Now, adjust between those two values, but this time only change the hundredths
place. Repeat this loop until you have found two values of E, separated by no
more than 0.0001 eV, such that one value off £ makes 1) go to +oo while the
other sends ¥ to —oo. Record these values of E.

9. Print the graph of your wave function ¢ (z) that corresponds to the best found
E. (It may help to label the plot with your names to help distinguish them
at the printer). The graph printed is for —3.5nm < z < +3.5nm. To fill in
the 1(z) for x < 0, use that we are looking at an even case right now, so
(—x) = (x). Carefully draw this in by hand. On your plot, make sure to
also sketch what the ideal (true) waveform would look like (that means if £
is determined with infinite precision.) On the print out write down the two E
values which specify the found energy (i.e. fill in the dots of ... < E < ....)
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10.

11.

12.

13.

14.

15.

16.

Next print only the top of your EXCEL sheet (instead of 1000 lines of data
points) and on the print out we also want the gridlines and column and row
labels. To do so: In the top menu click on “Page Layout”, click the boxes
for “Print” for both “Gridlines” and for “Headings”. Then highlight the area
you would like to print and then click on “Print Area” and select “Set Print
Area”. Then you are ready to print as usual: File — Print and choose the
“Landscape Orientation”.

After finding this energy and its corresponding wave function, the next energy
level is ODD so, begin again with the odd case, changing your initial
conditions in the table. Again adjust the values for energy (in steps of 0.100 eV
as before until you see the asymptotic behavior of the wave function switch from
blowing up to 400 to blowing up to —oo). It might help to adjust the vertical
scale of your plot. Calculate the wave function ¢ (x), repeating for different
values of F until you have found a pair of values of E/ on either side of the true
energy and differing by no more than 0.0001eV. Print the graph of the wave
function and add (hand drawn) the ¥(z) for z < 0. Remember that now it is
the odd case, so ¥(—z) = —(z). Again sketch ¢ (x) for the ideal solution and
add to your print out the two energy values specifying your found energy level.

Repeat the last step in order to get the next energy level /wave function. Make
sure that you have switched back to the even case! Again, it may help
to adjust the vertical scale of your plot. As before, on the print out add the
(x) for x < 0, specify the dots of ... < F < ..., and sketch ¢(z) for the ideal
solutions.

Repeat these steps for the next odd energy level/wave function so that you have
a total of two even and two odd solutions.

In your notebook arrange the graphs of the four ideal wavefunctions (i.e. ¥ (x —
+00) = 0) in order of increasing energy and add to each sketch the correspond-
ing most accurate energy you obtained. Which patterns do you find?

Determine the energy differences between the first and second wavefunctions,
second and third wavefunctions, and third and fourth wavefunctions. Do you
notice a pattern? Use this pattern to predict the energy of the fifth level, and
then verify your prediction with the numerical calculation in Excel. Note that
it might not be exact because of numerical rounding.

Summarize ALL the observations and trends you have noticed for wavefunctions
and corresponding energies of a harmonic oscillator potential. Compare your
energies to hwy.
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Discuss your summary with your instructor or a TA.

Hydrogen Atom

Now that you’ve learned how to apply the shooting method to obtain energy
levels, let’s apply this technique to the hydrogen atom. We looked at this same
element in the previous lab, where we determined the ground state energy ex-
perimentally using the emission spectrum. We therefore will be able to compare
the previous lab result with our computational result for the hydrogen atom en-
ergy. We will also compare with the expected energy levels E; /n? (that’s cool!)
For this case, we will need to consider the three-dimensional Schrédinger equa-
tion, since the hydrogen atom is, in fact, three-dimensional. This means our
wavefunction ¢(r, 6, ¢) is a function of all three spherical coordinates.

Fortunately, if we restrict our attention to states where ¢) depends only on r and
not on @ or ¢, we can still obtain all the energy levels. (The solutions correspond
to the s orbitals in chemistry.) For these states, the derivatives with respect to
0 and ¢ drop out of the 3D Schrodinger equation, giving the somewhat simpler
expression

dr?2 ' rdr

Now we can treat this like a one-dimensional problem, where our spatial variable
is r instead of x.

27; [(Pw + de] — ki@/)( ) = EY(r). (19.13)

Re-arranging the equation to isolate the second derivative results in

d*i 2 dy) Qme 2m.ke? Y
v TR YT TR
We will need to plug in some values, and to keep the numbers reasonably nice,
let’s use eV for energy and nanometers for length. Before we plug in numbers,

we can simplify things by plugging the Bohr radius into the last term,
7:L2
meke

(19.14)

ap = > = 0.052918 nm. (19.15)

We also bring in some factors of ¢ to make the units nicer:

2(mec”) By — 2y, (19.16)

(he)? aor

Now we just need two additional constants:

P(r) =

mec® = 511000eV  hc = 197.33eV-nm. (19.17)
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Procedure

(a) Download the template hydrogen.x1ls from the PHYS 212 lab folder. En-
ter the values for ag, fic and m.c? into the appropriate spaces. For the step
size use Ar = 4 x 10~*nm, and put in an value of £ = —16eV to begin
with.

(b) In the position column we cannot begin with » = 0 since the expression
for " (r), Eq. (19.16), has 1/r terms in it. That is why we use r = Ar for
the first row.

For initial conditions, we can set ¢)(r = Ar) = 1. The initial value for ¢ is
tricky. What happens is that the two 1/r terms in Eq. (19.16) can’t really
be blowing up as » — 0. Rather, they must be canceling. Therefore we
can conclude that

1
P~——1¢  forr=0 (19.18)
Qo

This gives us our initial value for ¢/

(c) Carefully enter the expression for ¢ into the first row. This is where most
mistakes will be made!

(d) Now build the second row using the update equations analogous to Eqs. 19.10
and 19.11 to obtain 1 (r 4+ Ar) and ¢'(r + Ar). Copy the formula from cell
D18 into cell D19. Once you have the second row programmed into Excel,
you can copy all formulae downwards by highlighting cells B19, C19, D19,
moving the cursor to the right bottom corner of cell D19 until the cursor
shows the black + and then double-clicking.

(e) Verify that you obtain for the first three lines the following values:

(z(om) | (@) | (@) [ ¥"(x) |
0.004 1 -18.8072 | 419.937
0.008 || 9.92E-01 | -18.7292 | 353.928
0.012 || 9.85E-01 | -18.5876 | 371.727

(f) Once you have entered these initial values, you should see a plot of of v
vs. 7 in the graph to the right of your equation cells. Now, increase the
value of E successively from —16eV to —15eV then to —14eV etc. and see
how the wave function responds. Try to obtain the ground state energy to
three digits of accuracy using the same method as you did for the harmonic
oscillator. Compare your answer to the accepted value E; = —13.606€V.
How does this compare to the ground state energy you found in the emis-
sion spectra lab? Print your graph and put it into your notebook, fill in
the dots in ... < E < ..., and draw the ideal solution.
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(2)

Next, use your numerical method to obtain the first excited state energy,
E5. You should change the step size to Ar = 8 x 10~*nm. To also change
the range of the horizontal axis: double click on the z-axis, that opens the
“Format Axis” menu, and set the maximum to a fixed value of 2. Then vary
E initially by increasing E in steps of 3eV. Once you narrowed down Es to
two values, successively change E until you have three significant figures
of accuracy. Compare your value to the accepted value E,, = E;/n?. Print
your graph, specify E and sketch the corresponding ideal solution and put
it into your lab notebook.

Change the step size to Ar = 16 x 10~*nm and calculate Es;. Change
the z-axis range again to have a maximum value of 3. Compare your
result to the accepted value. Print your graph, specify E and sketch the
corresponding ideal solution and put it into your lab notebook.

Look at your ideal wave functions for E;, Fy, and E3. Which pattern do
you find?

Discuss your results with your instructor or a TA.
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