
25. June 2015 EICS 2015, Duisburg, Germany

FlyLoop: A Micro Framework for Rapid
Development of Physiological
Computing Systems

1

Evan M. Peck, Eleanor Easse, Nick Marshall, William Stratton,
and L. Felipe Perrone

Department of Computer Science
Bucknell University, PA, U.S.A.

25. June 2015 EICS 2015, Duisburg, Germany

Physiological Computing Systems

2

“Research on adaptive systems, especially in the
area of affective computing, places enormous
emphasis on the capacity of the machine to
monitor and make accurate inferences about the
psychological state of the user.”

S.H. Fairclough 2015
http://physiologicalcomputing.org/2015/03/we-need-to-talk-about-clippy/

http://physiologicalcomputing.org/2015/03/we-need-to-talk-about-clippy/#more-2901
http://physiologicalcomputing.org/2015/03/we-need-to-talk-about-clippy/#more-2901

25. June 2015 EICS 2015, Duisburg, Germany

Wish List

• Adaptive systems that can sense the psychological
state of the user and can react intelligently to
physiological input.

• Easily built custom physiological computing systems for
rapid prototyping, replication, and validation.

3

25. June 2015 EICS 2015, Duisburg, Germany

The Biocybernetic Loop

4

SENSE

SENSE

...
EXTRACT

FEATURES
+

MAP TO
USER SATE

CALIBRATE

REAL TIME
OUTPUT

MODIFY

25. June 2015 EICS 2015, Duisburg, Germany

MUSE Brain Sensing Headband

5

25. June 2015 EICS 2015, Duisburg, Germany

Tobii EyeX Controller

6

25. June 2015 EICS 2015, Duisburg, Germany

Apple Watch

7

25. June 2015 EICS 2015, Duisburg, Germany

Challenges

• Build custom systems for proof of concept
investigations and rapid prototyping. Easy to make
them inflexible.

• Support any number of data sources with varying
velocity and modality.

• Couplings between components of the pipeline can be
unwieldy.

8

25. June 2015 EICS 2015, Duisburg, Germany

Observer Design Pattern (Gamma et al. 1995)

9

SUBJECT OBSERVER

request

notification

25. June 2015 EICS 2015, Duisburg, Germany

Observer Design Pattern (Gamma et al. 1995)

10

SUBJECT OBSERVER
notification

Push Model

25. June 2015 EICS 2015, Duisburg, Germany

Observer Design Pattern (Gamma et al. 1995)

11

SUBJECT OBSERVER
notification

Push Model

pusher receiver

25. June 2015 EICS 2015, Duisburg, Germany

Observer Design Pattern (Gamma et al. 1995)

12

SUBJECT OBSERVER

OBSERVER

OBSERVER

...

notifications

Push Model

pusher

receiver

25. June 2015 EICS 2015, Duisburg, Germany

FlyLoop

A lightweight, minimal programming framework
whose goal is usability for the developer.

FlyLoop is a Java microframework with
foundation classes and interfaces based on a
data flow model.

13

25. June 2015 EICS 2015, Duisburg, Germany

FlyLoop Core Modules

14

• Wrapping sensor specific data streams

• Manipulation of data streams

• Mapping of data to user state

• Marshall output to specific needs

25. June 2015 EICS 2015, Duisburg, Germany

FlyLoop Core Modules

15

• Modules inherit from a Receiver class and/or
implement a Pusher interface

• Data is transferred in or out according to a
system-wide polling rate

• Data is passed around as a Java Object

25. June 2015 EICS 2015, Duisburg, Germany

DataSource

16

• startCollection : activates component

• getOutput : returns single data point

• push : sends data point to receivers

Interfaces with any kind of
streaming sensor; makes
no assumptions about
incoming data

A few core operations:

25. June 2015 EICS 2015, Duisburg, Germany

Filter

17

• getDataPoints : ask for a window of data of
arbitrary size

Applies some transformation
on data stream

A core operation:

Designed to allow developer to focus on signal
processing algorithm rather than on timing of data
transfer

25. June 2015 EICS 2015, Duisburg, Germany

Calibrator

18

Small set of built-in functions to
communicate labels on training
data to Learner and to determine
mode of operation (training and
predicting)

Encapsulates training tasks.

25. June 2015 EICS 2015, Duisburg, Germany

Learner

19

Takes input from any DataSource
or Filter ; builds model based on
training data or outputs real-time
classification based on new data

A lot of complexity is encapsulated in this module
(statistics, machine learning).

• learn : ask for a window of data of arbitrary
size

A core operation:

25. June 2015 EICS 2015, Duisburg, Germany

Output

20

Any component in the pipeline
can push to it.

This generic component marshals data into different
formats for different purposes. For instance:

• Create logs,

• Interface with data visualization tools,

• Transmit model classifications over the network,

•etc.

25. June 2015 EICS 2015, Duisburg, Germany

Synchronization

When a component takes input from multiple
DataSources, sampling rates may not match.

21

A sample is available from one source, but not from
another. Possible behaviors:
(1) Repeat the previous input when there is no new
data.
(2) Push null values when there is no new data.

25. June 2015 EICS 2015, Duisburg, Germany

Simple Example

22

Mouse
Coords Smooth SVM Console

25. June 2015 EICS 2015, Duisburg, Germany

Complex Example

23

Mouse
Coords Smooth

SVM

Brain
Sensor 1

Brain
Sensor 2

Low Pass
Filter

Low Pass
Filter

Mean

Ratio

Adaptive
App

Brain Features
Log File

Raw Brain Data
Log File

25. June 2015 EICS 2015, Duisburg, Germany

Limitations

•Filters are constrained to online algorithms
•Component structure makes it challenging

to create manipulations that require a
global view of data

24

25. June 2015 EICS 2015, Duisburg, Germany

Ongoing and Future Work

•Refactoring / Cleaning up
•Public release under MIT license
•Creating persistent configuration files to

enable replication
•Creating a configuration language on top

of FlyLoop (compiles to Java) - possibly
visual

25

25. June 2015 EICS 2015, Duisburg, Germany

Thanks for your attention!

Questions?

26

25. June 2015 EICS 2015, Duisburg, Germany

Pusher (Interface)

public interface Pusher {

 public Receiver[] getReceivers();
 public void setReceivers(Receiver receivers[]);
 public void setReceivers(Receiver receiver);
 public void push();

}

27

25. June 2015 EICS 2015, Duisburg, Germany

Receiver (Abstract Class)

28

public abstract class Receiver {
!
 public void addSource(int source);
 public void addSources(int[] sources);
 public ArrayList<Integer> getSourceIDs();
 void receive(Object data, int id);
 public Object[] getData();
 public Object getDataPoint(int i);
 public abstract void processData();

}

25. June 2015 EICS 2015, Duisburg, Germany

Filter (Abstract Class)

29

public abstract class Filter extends Receiver implements Pusher {

 private Receiver[] receivers;
 private Object outputBuffer;
 private Queue<Object[]> allData;
 private int interval;
 public Filter(int interval, int max);
 public Filter(int interval);
 public Filter();
 public Object[] getInterval();
 public Object[] getInterval(int i);
 public Object[] getInterval(int i, int n);
 public abstract Object filterData();
 public void push();
 public Receiver[] getReceivers();
 public void setReceivers(Receiver[] receivers);
 public void setReceivers(Receiver receiver);
 public void processData();

}

25. June 2015 EICS 2015, Duisburg, Germany

Calibrator (Abstract Class)

30

public abstract class Calibrator implements Runnable {

 public Calibrator(String[] states, Learner[] learners,
 String inFile, String outFile);

 public Calibrator(String[] states, Learner learner,
 String inFile, String outFile);

 public Calibrator(String[] states, Learner learner);

 public Calibrator(String[] states, Learner[] learners);

 public void startCalibration();
 public abstract void skipCalibrator();
 public abstract void initCalibrator();
 public void finishCalibrating();
 public abstract void calibrate();
}

25. June 2015 EICS 2015, Duisburg, Germany

Learner (Abstract Class)

31

public abstract class Learner extends Receiver implements Pusher {
 public Learner(int max, boolean outputConfidence);
 public void processData();
 public String getState();
 public boolean isCalibrating();
 public void setCalibrating(boolean isCalibrating);
 public void startCalibrating();
 public void stopCalibrating();
 public void pauseCalibrating();
 public String getCalibrationState();
 public void setCalibrationState(String calibrationState);
 protected void setState(String state);
 public void push();
 public Double getConfidence();
 public void setConfidence(Double confidence);
 public Receiver[] getReceivers();
 public void setReceivers(Receiver[] receivers);
 public void setReceivers(Receiver receiver);
 public abstract void learn();
}

25. June 2015 EICS 2015, Duisburg, Germany

Data Source (Abstract Class)

32

public abstract class DataSource implements Pusher {

 public DataSource();
 public DataSource(boolean repeat);
 public abstract void startCollection();
 public void push();
 public Receiver[] getReceivers();
 public void setReceivers(Receiver[] receivers);
 public void setReceivers(Receiver receiver);
 public abstract Object getOutput();

}

25. June 2015 EICS 2015, Duisburg, Germany

Output (Abstract Class)

33

public abstract class Output extends Receiver {
!
 public Output(boolean stateChange, int max);
 public void processData();
 public abstract void output();

}

