
More Physics Simulations:

Astronomical Orbits

I. INTRODUCTION

You have made a simulation of the one-dimensional motion of a mass on a spring — now

you are going to make simulations of an astronomical orbits. This will require that you

be more careful with the vector nature of the position and velocity of the objects, and the

vector nature of the force.

We will start by modeling the orbit of the earth around the sun, and we will make the

simplifying assumption that the sun is infinitely massive and doesn’t move at all as the earth

orbits the sun. The magnitude of the force is

Fgrav =
Gmsunmearth

r2
, (1)

where r is the distance between the sun and the earth. The force is directed from the

earth toward the sun. Your Python program must determine a vector that expresses this

magnitude and direction so that it can determine a vector acceleration, so that it can update

the vector velocity.

Challenge: Figure out a way to express the vector force in terms of the position vector of

the earth, and then translate this into Python.

II. PROGRAM DETAILS

You should not have to change much in your numerical integration while loop. Here are

some values (in MKS units) that you will need to use in your program:

• G = 6.67 × 10−11 N·m2/kg2

• mearth = 5.97 × 1024 kg

1

• msun = 1.99 × 1030 kg

• Radius of earth’s (nearly circular) orbit: 1 AU = 1.5 × 1011 m

Here are some programming suggestions:

• Use a time step ∆t of 1 day = 24 × 60 × 60 s.

• Make sure that you choose the sizes for your sun and earth to be large enough to make

them visible. Remember that your simulation will display a very large area.

• Put the sun at the origin.

• Start with the earth on the x-axis.

• Give the earth an initial velocity that is in the y-direction. Choose a magnitude that

is consistent with what you know about the earth’s motion around the sun.

• Make sure that your force function returns a vector.

• You can make the earth “leave a trail.” If you defined an object with the name earth,

you can turn on the trail feature with the command:

earth.trail = curve(color=earth.color)

• The size of the field of view is usually set automatically; it is determined by the

graphical objects you place in the scene. You might want to set the scene size yourself

with the command

scene = display(width = 500, height = 500, range = NUMBER HERE)

2

III. FORCE FUNCTION

Here’s one way to code a gravitational force function:

def force(r):

f = -G*mS*mE*r/dot(r,r)**1.5

return f

3

