
Follow-up to Computer Exercise on Thursday September 4

& Hand-In Assignment

I. COMMENTS ON PRELIMINARY EXERCISE

Here is my completed version of the Table from today’s exercise:

t y(t) vy(t) (Fnet)y/m

0.0 4.0 0.0 -9.8

0.1 4.0 -0.98 -9.8

0.2 3.902 -1.96 -9.8

0.3 3.882 -2.94 -9.8

As I walked around the room I noticed that some of you had y(0.1) = 3.902 compared to

my value of y(0.1) = 0. The formula that I suggested that you use for updating the position

was

y2 ' y1 + v1∆t. (1)

In this case, y2 = y(0.1), y1 = y(0), and v1 = v(0), so

y(0.1) = y(0) + v(0)∆t

= 4.0 + 0 × 0.1

= 4.0 (2)

Some of you updated the velocity first, and then used the slight variant of Eq. (1):

y2 ' y1 + v2∆t, (3)

giving

y(0.1) = y(0) + v(0.1)∆t

= 4.0 − 0.98 × 0.1

= 3.902 (4)

Which formula is “right” for updating position, Eq. (1) or Eq. (3)? Eq. (1) gives you an

approximation for the change in position of the ball that is too small, and Eq. (3) gives you



an approximation for the change in position that is too large. But both of them give you

better and better approximations as ∆t is made smaller and smaller, and in one sense they

have the same accuracy. For this course let’s all agree to use Eq. (1); this will ensure that

all of our programs use the same technique, and it will make comparison of programs easier.

Terminology Note: The update algorithm given by Eq. (1) is known as the Euler step.

II. PROGRAMMING NOTES

• The size of the time step (dt) matters! Remember, the equations we are using

to update the position and velocity are approximations, and the approximations are

only good in the limit of a small time step. In the Preliminary Exercise I had you use

a time step of ∆t = 0.1 s; this is actually too big to give realistic results; you should be

using time steps that are much smaller. (I chose it so that it would be easy to check

the values in the table.)

• Remember to save your programs with a .py extension. This accomplishes 3 things:

1) IDLE can then find your program. (When you Open a file from IDLE, it only looks

for files with a .py extension. You can force it to look for other files, but it’s not

the default behavior), 2) files with a .py extension that are opened with IDLE have

helpful color coding. If the file doesn’t have a .py extension, IDLE doesn’t know it’s

a Python program, so it doesn’t automatically color code things. 3) there are some

ways to run Python programs (other than IDLE) that absolutely require the programs

to have this extension. Using the standard extension guarantees that they will work

in these environments.

• The Python/VPython combination knows about vectors. That means that you have

to use the same care inside your programs that you would in any other calculations

with vectors. If you define simple numbers like a = 2 and b = -2, it makes perfect

sense to have an statement like

if a>b:

but if you define two vectors like c = vector(1,-1,0) and c = vector(-1,1,0), it

makes absolutely no sense to have a statement like

if c>d:



You can compare components of vectors in an if statement, or you can compare

magnitudes of two vectors, comparing vectors themselves in this way just doesn’t

work.

• You should take advantage of the fact that Python/VPython knows about vectors,

especially when you start dealing in motion in more than one dimension. Here’s the

long way to update the three dimensional motion of a ball:

ball.position.x = ball.position.x + ball.velocity.x*dt

ball.position.y = ball.position.y + ball.velocity.y*dt

ball.position.z = ball.position.z + ball.velocity.z*dt

and here’s the short way:

ball.position = ball.position + ball.velocity*dt

The “short way” is equivalent to the expression (with vector signs)

~r = ~r + ~a∆t, (5)

and the “long way” is equivalent to writing out one equation for each of the three

components of the vector equation.

III. HAND-IN ASSIGNMENT

Each of you are to hand in a Python program simulating a bouncing ball. This assignment

is due next Tuesday (September 9) at 5:00 pm. You may hand it in by putting in my Netspace

Drop Box or by sending it me as an attachment to an email. Please include your name and

the word “ball” in the name of the program, e.g., something like ligare_ball.py. I should

be able to run your program in the form in which I receive it.

Some of you have working programs already, while some of you are not there yet. I have

a minimum expectation for this assignment outlined below that everybody should be able

to complete without too much trouble, but I hope that those of you for whom this has been

relatively straightforward will take this a little bit beyond what we were able to accomplish

in class today. (I would be happy to consult on extensions to the program.) For those of

you who haven’t made it quite so far yet, I will be scheduling some computer help sessions;

we’ll pick times for these sessions in class on Friday.



The minimum expectation is that your program will show a ball that is dropped from

rest from an chosen initial height above the floor and bounces up from the floor. Specific

requirements include the following:

• the acceleration and deceleration should be obvious in your animation,

• the ball should bounce repeatedly without significant change in height (unless you are

specifically putting in a loss mechanism),

• a print statement that enables you to see the values of time, position, and velocity

each time through the loop (this line can be “commented out” with a # symbol for

normal operation)

• Comments that identify the author of the program, explain the operation of the pro-

gram, and explain the meaning of any defined variables.

If you have a simple program and a more complex program you may want to submit

both.


