
Your First Physics Simulation:

The Bouncing Ball

I. PRELIMINARIES

In this exercise I want you to simulate a bouncing ball. We’ll start with a perfectly

elastic ball traveling in one dimension with no air resistance, and we’ll make things more

complicated (or “interesting”) as we go along.

In class on Wednesday we talked about how Newton’s Second Law is really a differential

equation. For motion in the vertical, or y direction we have

dpy

dt
= (Fnet)y, (1)

which for constant mass objects simplifies to

dvy

dt
=

1

m
(Fnet)y. (2)

For small time intervals ∆t this relationship can be approximated

∆vy

∆t
'

1

m
(Fnet)y, (3)

which can be rearranged to give

∆vy '

1

m
(Fnet)y∆t, (4)

or

v2y
' v1y

+
1

m
(Fnet)y∆t. (5)

In the special case with no air resistance (Fnet)y = −mg, so Eq. (5) simplifies to

v2y
' v1y

− g∆t. (6)

Exercise: You should convince yourself that there is a similar approximation that can be

used to update the position:

y2 ' y1 + v1y
∆t. (7)

Before you start doing any programming you should use Eqs. (5) and (7) to fill in the

entries of the following table. This gives the position and velocity for a ball dropped from

rest at a height of 4 m. When doing your calculations use a time step of ∆t = 0.1.



t y(t) vy(t) Fnet/m

0.0 4.0 0.0 -9.8

0.1

0.2

0.3

II. COMPUTER EXERCISES

• Open your working program that had a red ball between blue plates. You should save

it with a new name because we’re going to modify things. Run your program and

make sure it works. Notice that the field of view changes as the objects move. The

default behavior of VPython is to adjust the field of view automatically so that the

displayed objects fill the screen. If you want to fix the field of view you can add the

following line to your program immediately after the lines in which you first define the

ball and the walls:

scene.autoscale = 0

This turns the autoscaling feature off.

• Last time you defined a variable v that corresponded to a velocity. Today you will see

that the vector velocity is an attribute of the ball object that you defined; VPython

keeps track of the velocity for you. Delete the line from your program that looks like

v = 1

and replace it with the line

ball.velocity = vector(1,0,0)

Then delete the line that looks like

ball.pos.x = ball.pos.x + v*dt

and replace it with the line

ball.pos = ball.pos + ball.velocity*dt

You should run your program and see that nothing has changed.

NOTE: In this program we have now updated the vector position of the ball. We



could have updated just the x-component of the position with the line

ball.pos.x = ball.pos.x + ball.velocity.x*dt

but it’s nice to be able to do all three components in one vector operation.

• Now modify your program so that you have a single blue plate oriented horizontally,

and a single stationary red ball. The plate will serve as the floor on which your ball

will bounce. Put the floor at position (0, 0, 0). Give the red ball a radius of 0.5 and

put it at position (0, 4, 0) so that it is directly above the center of your floor. Run

your program to make sure that the floor and the ball are displayed correctly.

• Modify your program so that the position and velocity are updated according to New-

ton’s Second Law in every pass through the while loop. Remember that everything

that is indented after the while statement is “inside” the loop.

– Check that the motion of the falling ball “looks” correct when you run your

program. (Is it obvious that the ball is accelerating?)

– Check that your program is actually calculating the correct numbers for each

time step. To do this you can change the value of dt to 0.1 and check to see if

your program’s values agree with those you entered in the table earlier in this

exercise. You will need a print statement to see the values calculated by your

program, and you may want to slow down the rate so that it’s easier to stop the

execution of your program at an appropriate place.

• Make your ball bounce; it should bounce indefinitely.

• Make your ball do something “more interesting.” For example,

– Give it an initial velocity with an x component. Make it bounce if it hits the

floor, but continue down indefinitely if it misses.

– Put in air resistance.

– Make the ball inelastic, i.e., make it loose some energy on every bounce.

– Make the ball change colors when it bounces.

– . . .


