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1 Introduction

Things to bring out in the introduction:

• Include historical discussion. The early ARL work is described in [1], and this TR also lays

out many of the fundamental issues. This report is important primarily as it documents ARL

and contractor experiments dating to 1992 and 1993, so a good one for us to cite. It is fully

releasable and is generally available to anyone via the DTIC system.

• Contrast with conventional array processing literature: Note the propagation issues, and what

to do about them. Cite papers by Gershman, Besson, Stoica, Swami/Ghogo, . . .

• (Ultra-)wideband signals: frequencies of interest from 30 Hz to 250 Hz. Below 30 Hz (infra-

sonics): large wavelength and high wind noise. Above 250 Hz: rapid attenuation, so limited

range. Sources often emit sounds that are sums-of-harmonics, due to rotating machinery in

ground vehicle/aircraft engines, and also due to “tread slap” from tracked vehicles in motion.

Perhaps note that seismic sensors are often used simultaneously with microphones? Citations

for seismic?

• The wavelength is large relative to the array apertures: At 30 Hz, λ = (330 m/s)/(30 Hz)

= 11 m, and at 200 Hz, λ = (330 m/s)/(200 Hz) = 1.65 m. Therefore the wavelengths of

interest are from 1 m to 10 m. Microphone arrays typically used in practice have apertures

from several meters [1] to less than one meter, e.g., [2].

• Sources may be either far-field or near-field with respect to individual array apertures, and

they are almost always near-field with respect to multiple arrays. Ground vehicles and aircraft

are loud and can be detected at ranges of 100’s or 1,000’s of meters.

• Sensor networking and signal processing issues:

Nodes are connected by wireless communication links, and each node can perform local sig-

nal processing. The communication links have limited bandwidth. The low-frequency signals

allow low sampling rates and enable sophisticated signal processing. Therefore an important

design question is how to perform distributed processing in order to reduce communication
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bandwidth while minimizing the degradation in detection, estimation, and classification per-

formance.

• Propagation characteristics for sound in air [3, 4, 5, 6, 7, 8, 9, 10, 11]:

– Nonhomogeneous, turbulent atmosphere causes random fluctuations in the measured

signals, with variations on time scales from 1 to 10’s of seconds.

– This “scattering” of the sound causes loss in the spatial coherence of the signals measured

at pairs of sensors, as well as fluctuations in the signal energy at a single sensor. The

scattering may be “weak” or “strong,” which are analogous to Rician and Rayleigh

fading in the radio propagation literature.

• Sources in motion and the presence of multiple sources are typical in the battlefield applica-

tions, and these present challenges that must be addressed.

If very many individual sources are present in clusters, then perhaps best to use nonparametric

methods to detect and track the clusters?

• Other issues: Aspect-angle dependence of source signal, Doppler for moving sources, multi-

mode sensing and fusion (e.g., seismic and acoustic sensors).

2 Models for Source Signals and Propagation

** Add overview paragraph for this section . . . **

2.1 Models for source signals

Ground vehicles such as tanks and trucks often emit signals that have harmonic structure. The

report [1] describes the mechanisms by which the harmonics are produced in the engine cylinders

and the track system in tracked vehicles. Turbine engines are not characterized by harmonic lines,

but rather have a broadband, flat spectrum at low frequencies. Helicopter sounds are characterized

by harmonic structures caused by the main and tail rotors. However, jet engines in aircraft do not

contain harmonic lines, but rather have broadband spectra with some strong spectral lines [1].

Thus the sources of interest in aeroacoustic sensor networks typically have spectra that are either

harmonic lines or broadband. The signal processing for detection, localization, and classification
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is highly dependent on whether the source spectrum is harmonic or broadband. As we will discuss

in Section 3, broadband sources allow time-difference of arrival processing for localization, while

harmonic sources allow differential Doppler estimation.

Various approaches have been used to model the source signals, including autoregressive (AR)

processes, sums of harmonics, and Gaussian random processes. For example, an AR model is used

in [13] for signals with spectral lines as well as a broadband component, and then a combination

of maximum likelihood estimation (MLE) and a generalized likelihood ratio test (GLRT) is used

to detect the signal with a sensor array. A similar AR model is used in [14], and algorithms are

proposed to estimate the angle of arrival (AOA) of the source. In [15], the signal from a helicopter

is modeled as a sum of harmonics, and an AR model is used to represent broadband interference.

Algorithms are proposed for differential Doppler estimation using the sum of harmonics model and

for separation of the helicopter signal and interference. In [16], FFT-based methods are investigated

to detect signals with harmonic spectra. We have used Gaussian random processes to model both

harmonic and broadband sources in [17].

Source signals often have time-varying characteristics due to changes in engine load during

acceleration or braking, and due to changing aspect angle of the source. For example, many ground

vehicles sound different when the exhaust is facing toward the sensor array than when the exhaust

faces away from the array. Modeling these time variations is nontrivial, so the common approach

is to assume that the observation interval is short enough so that the source signal characteristics

are constant.

2.2 Models for measured sensor signals

In this section, we present a model for the signals received by the sensors in a microphone array. We

begin in Section 2.2.1 with the simplest case in which a single nonmoving source emits a sinusoidal

waveform, and the atmosphere induces no scattering. Then in Section 2.2.2, we extend the model

to include the effects of scattering, and in Section 2.2.3, approximate models for the scattering

as a function of source range, frequency, and atmospheric conditions are presented. The model is

extended to multiple sources and multiple frequencies (wideband) in Section 2.2.4.

The sinusoidal source signal that is measured at a reference distance of 1 m from the source is

sref(t) =
√

Sref cos(2πfot + χ), (1)
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where the frequency of the tone is fo = ωo/(2π) Hz, the period is To sec, the phase is χ, and the

amplitude is
√

Sref. The sound waves propagate with wavelength λ = c/fo, where c is the speed of

sound. The wavenumber is k = 2π/λ = ωo/c. We will represent sinusoidal and narrowband signals

by their complex envelope, which may be defined in the two ways in (2):

s̃ref(t) = s
(I)
ref(t) + j s

(Q)
ref (t) = [sref(t) + j H{sref(t)}] exp (−j2πfot) (2)

=
√

Sref exp (jχ) . (3)

We will represent the complex envelope of a quantity with (̃·), the in-phase component with (·)(I),

the quadrature component with (·)(Q), and the Hilbert transform with H{·}. The in-phase (I) and

quadrature (Q) components of a signal are obtained by the processing in Figure 2. The FFT is

often used to approximate the processing in Figure 2 for a finite block of data, where the real and

imaginary parts of the FFT coefficient at frequency fo are proportional to the I and Q components,

respectively. The complex envelope of the sinusoid in (1) is given by (3), which is not time-varying,

so the average power is |s̃ref(t)|2 = Sref.

It is easy to see for the sinusoidal signal (1) that shifting sref(t) in time causes a phase shift in

the corresponding complex envelope, i.e.,
�

sref(t − τo) = exp(−j2πfoτo) s̃ref(t). A similar property is

true for narrowband signals whose frequency spectrum is confined to a bandwidth B Hz around a

center frequency fo Hz, where B � fo. For a narrowband signal z(t) with complex envelope z̃(t),

a shift in time is well-approximated by a phase shift in the corresponding complex envelope,

�

z(t − τo) ≈ exp(−j2πfoτo) z̃(t) (narrowband approximation). (4)

Equation (4) is nothing more than the well-known Fourier transform relationship between shifts in

time and phase shifts that are linearly proportional to frequency. The approximation is accurate

when the frequency band is narrow enough so that the linearly increasing phase shift is close to

exp(−j2πfoτo) over the band.

The source and array geometry is illustrated in Figure 1. The source is located at coordinates

(xs, ys) in the (x, y) plane. The array contains N sensors, with sensor n located at (xo + ∆xn, yo +

∆yn), where (xo, yo) is the center of the array and (∆xn,∆yn) is the relative sensor location. The

propagation time from the source to the array center is

τo =
do

c
=

1

c

[
(xs − xo)

2 + (ys − yo)
2
]1/2

, (5)
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** NEED TO ADD PICTURE **

Figure 1: Geometry of source and sensor locations.

where do is the distance from the source to the array center. The propagation time from the source

to sensor n is

τn =
dn

c
=

1

c

[
(xs − xo − ∆xn)2 + (ys − yo − ∆yn)2

]1/2
. (6)

Let us denote the array diameter by L = max{ρmn}, where ρmn is the separation between sensors

m and n, as shown in Figure 1. The source is in the far-field of the array when the source distance

satisfies do � L2/λ, in which case (6) may be approximated with the first term in the Taylor series

(1 + u)1/2 ≈ 1 + u/2. Then τn ≈ τo + τo,n with error that is much smaller than the source period,

To, where

τo,n = −1

c

[
xs − xo

do
∆xn +

ys − yo

do
∆yn

]
= −1

c
[(cos φ)∆xn + (sinφ)∆yn] . (7)

The angle φ is the azimuth bearing, or angle of arrival (AOA), as shown in Figure 1. In the far-field,

the spherical wavefront is approximated as a plane wave over the array aperture, so the bearing

φ contains the available information about the source location. For array diameters L < 2 m and

tone frequencies fo < 200 Hz so that λ > 1.5 m, the quantity L2/λ < 2.7 m. Thus the far-field

is valid for source distances on the order of 10’s of meters. For smaller source distances and/or

larger array apertures, the curvature of the wavefront over the array aperture must be included

in τn according to (6). We develop the model for the far-field case in this section. However, the

extension to the near-field is easily accomplished by redefining the array response vector (a in (20))

to include the wavefront curvature with an = exp(−j2πfoτn).

Four phenomena contribute to modify the reference signal in (3) to produce the signals that

impinge on the sensor array.

1. Propagation delay from source to sensors, given by τn in (6), or the far-field approximation

τn ≈ τo + τo,n with (5) and (7).

2. Random fluctuations in the amplitude and phase of the signals caused by “scattering” in the

nonhomogeneous, turbulent atmosphere.

3. Additive noise at the sensors caused by thermal noise, wind noise, and directional interference.
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z(t)

2 cos(2 π f0 t)

-2 sin(2 π f0 t)

Lowpass Filter,
Band [-B/2, B/2]

Lowpass Filter,
Band [-B/2, B/2]

In-phase

Quadrature

Figure 2: Processing to obtain in-phase and quadrature components, z (I)(t) and z(Q)(t).

4. Transmission loss caused by spherical spreading of the wavefronts, refraction, and ground

interactions.

The dominant effect is scattering caused by turbulence, which causes random fluctuations in the

complex signals at the sensors. Scattering causes fluctuations in the signal energy at a single sensor

and loss in the spatial coherence of signals measured at pairs of sensors. Scattering models are

presented in Sections 2.2.2 and 2.2.3. Thermal noise at the sensors is typically independent from

sensor to sensor, while wind noise and interference from an undesired source produce additive

noise that is (spatially) correlated from sensor to sensor. The transmission loss is difficult to model

analytically. A software packaged called the Acoustic Battlefield Aid (ABFA) [3, 4] includes routines

to numerically evaluate the transmission loss with a parabolic solution to the wave equation that

accounts for spherical spreading, sound refraction by wind and temperature gradients, diffraction,

ground interactions, and shadowing behind terrain features such as hills and buildings. The net

effect of the transmission loss is that the average power of the source signal impinging on each sensor

in the array is S, which is less than the reference power Sref at range 1 m from the source. We do not

attempt to model the transformation from Sref to S due to the analytical intractability. Instead, we

model S as a deterministic parameter, which is reasonable because S is typically much larger than

the average noise power, so the average signal to noise ratio (SNR) is large. However, we do model

the temporal fluctuations in the signal power caused by scattering, and these random fluctuations

have a much more significant impact on signal processing performance than the transmission loss

from Sref to S.
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The models that we present in this section were developed by Wilson and others in [3, 4, 5,

6, 7, 8, 9, 10, 11]. We refer the reader to these references for details about the physical modeling

and for references to the primary source material. The following assumptions and simplifications

are implicit in the models. Line-of-sight propagation is assumed (with no multipath), so the mod-

els are appropriate for open fields. The additive noise is modeled as independent from sensor to

sensor, which ignores the spatial correlation of wind noise that may extend over several meters

[18], as well as the effects of interference from an undesired noise source in a particular direction.

It is straightforward to extend the models to include spatially-correlated additive noise, but the

signal processing may be considerably more complicated in this case (see, e.g., [19]). The random

fluctuations caused by scattering are modeled as complex, circular, Gaussian random processes. It

is shown in [9] with experimental measurements that the Gaussian model is valid in many condi-

tions, but some measured data indicates non-Gaussian scattering characterized by small amplitude

variations with large phase variations. Finally, the sensor array is assumed to be planar, and the

models assume near-normal incidence of the wavefronts on the array aperture [7].

2.2.1 Model with no scattering

Here we present the model for the signals impinging on the sensor array when there is no scattering.

Using the far-field approximation, the noisy measurements at the sensors are

zn(t) = sn (t − τo − τo,n) + wn(t), n = 1, . . . , N. (8)

In the absence of scattering, the signal components are pure sinusoids,

sn(t) =
√

S cos (2πfot + χ) . (9)

The wn(t) are additive, white, Gaussian noise (AWGN) processes that are real-valued, continuous-

time, zero-mean, jointly wide-sense stationary, and mutually uncorrelated at distinct sensors with

power spectral density (PSD) (No/2) W/Hz. That is, the noise correlation properties are

E{wn(t)} = 0, −∞ < t < ∞, n = 1, . . . , N (10)

rw,mn(ξ) = E{wm(t + ξ)wn(t)} = rw(ξ) δmn, (11)

where E{·} denotes expectation and rw(ξ) = (No/2) δ(ξ) is the noise autocorrelation function that

is common at all sensors. The Dirac delta function is δ(·), and the Kronecker delta function is
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δmn = 1 if m = n and 0 otherwise. As noted above, modeling the noise as spatially white may be

inaccurate if wind noise or interfering sources are present in the environment. The noise PSD is

Gw(f) = F{rw(ξ)} =
No

2
, (12)

where F{·} denotes Fourier transform. With no scattering, the complex envelope of zn(t) in (8)

and (9) is, using (4),

z̃n(t) = exp [−j (ωoτo + ωoτo,n)] s̃n(t) + w̃n(t)

=
√

S exp [j (χ − ωoτo)] exp [−j ωoτo,n] + w̃n(t), (13)

where the complex envelope of the source component is

s̃n(t) =
√

S ejχ, n = 1, . . . , N (no scattering). (14)

We assume that the complex envelope is lowpass filtered with bandwidth from [−B/2, B/2] Hz,

e.g., as in Figure 2. Assuming that the lowpass filter is ideal, the complex envelope of the noise,

w̃n(t), has PSD and correlation

Gw̃(f) = (2No) rect

(
f

B

)
(15)

rw̃(ξ) = E{w̃n(t + ξ)w̃n(t)∗} = F−1 {Gw̃(f)} = (2NoB) sinc (Bξ) (16)

rw̃,mn(ξ) = E{w̃m(t + ξ)w̃n(t)∗} = rw̃(ξ) δmn, (17)

where (·)∗ denotes complex conjugate, rect(u) = 1 for −1/2 < u < 1/2 and 0 otherwise, and

sinc(u) = sin(πu)/(πu). Note that the noise samples are uncorrelated (and independent since

Gaussian) at sample times spaced by 1/B sec. In practice, the noise PSD Gw̃(f) is neither flat nor

perfectly band-limited as in (15). However, the lowpass filtering to bandwidth B Hz implies that

the noise samples have decreasing correlation for time spacing greater than 1/B sec.

Let us define the vectors

z̃(t) =




z̃1(t)
...

z̃N (t)


 , s̃(t) =




s̃1(t)
...

s̃N (t)


 , w̃(t) =




w̃1(t)
...

w̃N (t)


 . (18)

Then using (13) with (7),

z̃(t) =
√

S exp [j (χ − ωoτo)] a + w̃(t) =
√

S ejθ a + w̃(t), (19)
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where a is the array steering vector (or array manifold)

a =




exp [j k ((cos φ)∆x1 + (sin φ)∆y1)]
...

exp [j k ((cos φ)∆xN + (sin φ)∆yN )]


 (20)

with k = ωo/c. Note that the steering vector, a, depends on the frequency ωo, the sensor lo-

cations (∆xn,∆yn), and the source bearing φ. The common phase factor at all of the sensors,

exp [j (χ − ωoτo)] = exp [j (χ − kdo)], depends on the phase of the signal emitted by the source (χ)

and the propagation distance to the center of the array (kdo). We simplify the notation and define

θ
4
= χ − kdo, (21)

which is a deterministic parameter.

In preparation for the introduction of scattering into the model, let us write expressions for

the first- and second-order moments of the vectors s̃(t) and z̃(t). Let 1 be an N × 1 vector of 1’s,

Rz̃(ξ) = E{z̃(t + ξ) z̃(t)H} be the N × N cross-correlation function matrix with (m,n) element

rz̃,mn(ξ) = E{z̃m(t+ξ)z̃n(t)∗}, and Gz̃(f) = F {Rz̃(ξ)} be the cross-spectral density (CSD) matrix,

then

E{s̃(t)} =
√

S ejχ 1 E{z̃(t)} =
√

S ejθ a (22)

Rs̃(ξ) = S 11T Rz̃(ξ) = S aaH + rw̃(ξ) I (23)

Gs̃(f) = S 11T δ(f) Gz̃(f) = S aaH δ(f) + Gw̃(f) I (24)

E{s̃(t)s̃(t)H} = Rs̃(0) = S 11T E{z̃(t)z̃(t)H} = Rz̃(0) = S aaH + σ2
w̃ I, (25)

where (·)T denotes transpose, (·)H denotes complex conjugate transpose, I is the N × N identity

matrix, and σ2
w̃ is the variance of the noise samples,

σ2
w̃ = E

{
|w̃(t)|2

}
= rw̃(0) = 2NoB. (26)

Note from (24) that the PSD at each sensor contains a spectral line since the source signal is

sinusoidal. Note from (25) that at each sensor, the average power of the signal component is S, so

the signal to noise ratio (SNR) at each sensor is

SNR =
S

σ2
w̃

=
S

2NoB
. (27)
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The complex envelope vector z̃(t) is typically sampled at a rate fs = B samples/sec, so the

samples are spaced by Ts = 1/fs = 1/B sec,

z̃(iTs) =
√

S ejθ a + w̃(iTs), i = 0, . . . , T − 1. (28)

According to (17), the noise samples are spatially independent as well as temporally independent,

since rw̃(iTs) = rw̃(i/B) = 0. Thus the vectors z̃(0), z̃(Ts), . . . , z̃((T −1)Ts) in (28) are independent

and identically distributed (iid) with complex normal distribution, which we denote by z̃(iTs) ∼

CN(mz̃,Cz̃), with mean and covariance matrix

mz̃ =
√

S ejθ a and Cz̃ = σ2
w̃ I (no scattering). (29)

The joint probability density function for CN (mz̃,Cz̃) is given by [35]

f (z̃) =
1

πNdet (Cz̃)
exp

[
− (z̃ −mz̃)

H C−1
z̃

(z̃−mz̃)
]
, (30)

where “det” denotes determinant. In the absence of scattering, the information about the source

location (bearing) is contained in the mean of the sensor observations. If the T time samples

in (28) are coherently averaged, then the resulting SNR per sensor is T times that in (27), so

SNR′ = T · (S/σ2
w̃) = T · [S/(2No/Ts)] = T · S/(2No), where T = T · Ts is the total observation

time, in seconds.

2.2.2 Model with scattering

Next, we include the effects of scattering by the atmosphere in the model for the signals measured

at the sensors in the array. Wave propagation through the nonhomogeneous, turbulent atmosphere

causes random fluctuations in the measured signals, with variations on time scales from 1 to 10’s

of seconds. As noted previously, the model that we present was developed by Wilson and others

[3, 4, 5, 6, 7, 8, 9, 10, 11]. The model in Section 2.2.1 for propagation without scattering assumed

line of sight propagation (no multipath), and the scattering model maintains this assumption.

The scattering modifies the complex envelope of the signals at the array by spreading a portion

of the power from the (deterministic) mean component into a zero-mean random process with a

PSD centered at 0 Hz. We assume that the bandwidth of the scattered signal, which we denote

by B, is much smaller than the tone frequency, fo. The “saturation” parameter [3, 4, 5, 6, 7, 8],

denoted by Ω ∈ [0, 1], defines the fraction of average signal power that is scattered from the mean
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into the random component. The scattering may be “weak” (Ω ≈ 0) or “strong” (Ω ≈ 1), which

are analogous to Rician and Rayleigh fading in the radio propagation literature. The modification

of (8), (9), (13), and (14) to include scattering is as follows, where z̃n(t) is the signal measured at

sensor n:

z̃n(t) = exp [−j (ωoτo + ωoτo,n)] s̃n(t) + w̃n(t) (31)

s̃n(t) =
√

(1 − Ω)S ejχ + ṽn(t) ejχ, n = 1, . . . , N (with scattering). (32)

In order to satisfy conservation of energy with E{|s̃n(t)|2} = S, the average power of the scattered

component must be E{|ṽn(t)|2} = ΩS. The value of the saturation Ω and the correlation properties

of the vector of scattered processes, ṽ(t) = [ṽ1(t), . . . , ṽN (t)]T , depend on the source distance (do)

and the meteorological conditions. The vector of scattered processes ṽ(t) and the additive noise

vector w̃(t) contain zero-mean, jointly wide-sense stationary, complex, circular Gaussian random

processes. The scattered processes and the noise are modeled as independent, E{ṽ(t+ ξ)w̃(t)H} =

0. The noise is described by (15)-(17), while the saturation Ω and statistics of ṽ(t) are determined

by the “extinction coefficients” of the first and second moments of s̃(t). Approximate models for

the extinction coefficients are available from physical modeling of the turbulence in the atmosphere

[cite Wilson]. In the remainder of this section, we define the extinction coefficients and relate them

to Ω and the statistics of ṽ(t). Then in Section 2.2.3, we provide approximate analytical expressions

for the extinction coefficients under several meteorological conditions, thereby providing models for

the sensor array data that includes the turbulent scattering by the atmosphere.

We denote the extinction coefficients for the first and second moments of s̃(t) by µ and ν(ρmn),

respectively, where ρmn is the distance between sensors m and n (see Figure 1). The extinction

coefficients are defined as follows.

E{s̃n(t)} =
√

(1 − Ω)S ejχ 4
=

√
S ejχ e−µdo (33)

rs̃,mn(0) = E{s̃m(t)s̃n(t)∗} = (1 − Ω)S + rṽ,mn(0)
4
= S e−ν(ρmn)do (34)

where

rs̃,mn(ξ) = E{s̃m(t + ξ)s̃n(t)∗} = (1 − Ω)S + rṽ,mn(ξ). (35)

The right sides of (33) and (34) are the first and second moments without scattering, from (22)

and (23), respectively, multiplied by a factor that decays exponentially with increasing distance do
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from the source. From (33), we obtain

√
(1 − Ω) = e−µdo and Ω = 1 − e−2µdo . (36)

Also, by conservation of energy with m = n in (34), adding the average powers in the unscattered

and scattered components of s̃n(t) must equal S, so

rs̃(0) = E {|s̃n(t)|} = e−2µdoS + rṽ(0) = S (37)

=⇒ rṽ(0) = E {|ṽn(t)|} =

∫ ∞

−∞

Gṽ(f) df =
(
1 − e−2µdo

)
S = ΩS, (38)

where rṽ(ξ) = E{ṽn(t + ξ)ṽn(t)∗} is the autocorrelation function (which is the same for all n) and

Gṽ(f) is the corresponding PSD. Therefore for source distances do � 1/(2µ), the saturation Ω ≈ 0

and most of the energy from the source arrives at the sensor in the unscattered (deterministic

mean) component of s̃n(t). For source distances do � 1/(2µ), the saturation Ω ≈ 1 and most of

the energy arrives in the scattered (random) component.

Next, we use (34) to relate the correlation of the scattered signals at sensors m and n, r ṽ,mn(ξ),

to the second moment extinction coefficient, ν(ρmn). Since the autocorrelation of ṽn(t) is identical

at each sensor n and equal to rṽ(ξ), and assuming that the PSD Gṽ(f) occupies a narrow bandwidth

centered at 0 Hz, the cross-correlation and cross-spectral density satisfy

rṽ,mn(ξ) = γmn rṽ(ξ) and Gṽ,mn(f) = F{rṽ,mn(ξ)} = γmnGṽ(f), (39)

where |γmn| ≤ 1 is a measure of the coherence between ṽm(t) and ṽn(t). The definition of γmn

as a constant includes an approximation that the coherence does not vary with frequency, which

is reasonable since the bandwidth of Gṽ(f) is narrow. For sensor arrays near ground level, the

autocorrelation function of the scattered signal, rṽ(ξ), remains correlated over time scales from

approximately 1 to 10 seconds [3, 4]. Therefore the bandwidth of Gṽ(f) is on the order of 0.1 to

1 Hz. The bandwidth B in the lowpass filters for the complex amplitude in Figure 2 should be

chosen to be equal to the bandwidth of Gṽ(f). We assume that γmn in (39) is real-valued and

non-negative, which implies that phase fluctuations at sensor pairs are not biased toward positive

or negative values. Then using (39) with (38) and (36) in (34) yields the following relation between

γmn and µ, ν:

γmn =
e−ν(ρmn)do − e−2µdo

1 − e−2µdo
, m, n = 1, . . . , N. (40)
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We define Γ as the N × N matrix with elements γmn. The second moment extinction coefficient

ν(ρmn) is a monotonically increasing function, with ν(0) = 0 and ν(∞) = 2µ, so γmn ∈ [0, 1].

Combining (31) and (32) into vectors, and using (36) yields

z̃(t) =
√

S ejθ e−µdo a + ejθ a ṽ(t) + w̃(t), (41)

where θ is defined in (21) and a is the array steering vector in (20). We define the matrix B with

elements

Bmn = exp [−ν(ρmn)do] , (42)

and then we can extend the second-order moments in (22)-(25) to the case with scattering as

E{z̃(t)} = e−µdo
√

S ejθ a
4
= mz̃ (43)

Rz̃(ξ) = e−2µdo S aaH + S
[
B ◦

(
aaH

)
− e−2µdo aaH

] rṽ(ξ)

S (1 − e−2µdo)
+ rw̃(ξ) I (44)

Gz̃(f) = e−2µdo S aaH δ(f)

+ S
[
B ◦

(
aaH

)
− e−2µdo aaH

] Gṽ(f)

S (1 − e−2µdo)
+ Gw̃(f) I (45)

E{z̃(t)z̃(t)H} = Rz̃(0) = S B ◦
(
aaH

)
+ σ2

w̃ I
4
= Cz̃ + mz̃ mH

z̃
, (46)

where ◦ denotes element-wise product between matrices. The normalizing quantity S
(
1 − e−2µdo

)

that divides the autocorrelation rṽ(ξ) and the PSD Gṽ(f) in (44) and (45) is equal to rṽ(0) =
∫

Gṽ(f) df . Therefore the maximum of the normalized autocorrelation is 1, and the area under the

normalized PSD is 1. The complex envelope samples z̃(t) have the complex normal distribution

CN (mz̃,Cz̃), which is defined in (30). The mean vector and covariance matrix are given in (43)

and (46), but we repeat them below for comparison with (29),

mz̃ = e−µdo
√

S ejθ a (with scattering) (47)

Cz̃ = S
[
B ◦

(
aaH

)
− e−2µdo aaH

]
+ σ2

w̃ I (with scattering). (48)

Note that the scattering is negligible if do � 1/(2µ), in which case e−2µdo ≈ 1 and Ω ≈ 0. Then

most of the signal energy is in the mean, with B ≈ 11T and γmn ≈ 1 in (40), since ν(ρmn) < 2µ.

For larger values of the source range do, more of the signal energy is scattered, and B may deviate

from 11T (and γmn < 1 for m 6= n) due to coherence losses between the sensors. At full saturation

(Ω = 1), B = Γ.
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The scattering model in (41) may be formulated as multiplicative noise on the steering vector,

z̃(t) =
√

S ejθ a ◦
[
e−µdo 1 +

ṽ(t)√
S

]
+ w̃(t)

4
=

√
S ejθ (a ◦ ũ(t)) + w̃(t). (49)

The multiplicative noise process, ũ(t), is complex normal with mũ = E{ũ(t)} = e−µdo 1 and

E{ũ(t) ũ(t)H} = B, so the covariance matrix is C �

u
= B− e−2µdo 11T = ΩΓ, where Γ has elements

γmn in (40). The mean vector and covariance matrix in (47) and (48) may be represented as

mz̃ =
√

S ejθ (a ◦ mũ) and Cz̃ = S
[(

aaH
)
◦ C �

u

]
+ σ2

w̃ I.

The sampling rate fs = 1/Ts for the complex envelope is determined by the coherence band-

width, B, of the scattered process. As discussed in the text below (39), B is on the order of 0.1 to

1 Hz so samples spaced by Ts ≈ 1/B = 1 to 10 seconds are independent.

2.2.3 Model for extinction coefficients

We present approximate models for the extinction coefficients of the first and second moments, µ

and ν(ρ). The approximate formulas are obtained by fitting linear models to the log-log plots in

Figures 4 and 5 of [6]. Both coefficients depend quadratically on the frequency of the tone, although

this frequency dependence is not shown explicitly in the notation. For sensor separations, ρ, in the

range from 0.1 to 10 m, the second moment coefficient is

ν(ρ) ≈





(
1.52 × 10−10

)
f2 ρ1.3, mostly cloudy and calm(

1.51 × 10−9
)

f2 ρ1.3, mostly sunny and calm(
1.58 × 10−9

)
f2 ρ1.2, windy and (sunny or cloudy)

, (50)

where f is in Hz, ρ is in m, and ν is in m−1. The value of ν(ρ) affects the sensor signals according

exp(−ν(ρ)do), where do is the distance to the source. Note from (50) that in calm conditions (no

wind), the same value of exp(−ν(ρ)do) is maintained for source distances that are 10 times larger

in cloudy conditions than in sunny conditions. The presence of wind nullifies the advantages of

cloudy conditions over sunny conditions.

Recall from the discussion after (40) that ν(ρ) → 2µ as the sensor separation ρ gets large.

The approximation (50) is valid for ρ between 0.1 and 10 m, and then there is a transition to the

asymptotic value of 2µ for ρ between 10 and 1000 m.¡ The asymptotic value is reached for ρ between

100 and 1000 m, which yields the approximation of the first moment coefficient as µ = (1/2)α(∞),

µ =

{
10−7 f2, cloudy
3 × 10−7 f2, sunny

. (51)
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The wind has negligible effect on the first moment coefficient µ. The value of µ affects the saturation

according to Ω = 1 − exp(−2µdo) as in (36). For the same value of Ω, the source distance do may

be about three times larger in cloudy conditions than in sunny conditions. These results from [6]

were obtained by incorporating both the inertial-subrange and the energy-subrange (large-scale)

of the turbulence spectrum [10]. The calculations in [6] were performed for a propagation path

height of 1 m.

Let us evaluate the saturation Ω for some typical scenarios in aeroacoustics. At f = 100 Hz with

cloudy conditions, the saturation is Ω = 1 − exp(−2 × 10−3do). So for do � 500 m, the saturation

Ω ≈ 0 and the scattering is weak, while for do � 500 m, the saturation Ω ≈ 1 and the scattering is

strong. At do = 10, 100, and 1000 m, the saturation is Ω ≈ 0.02, 0.2, and 0.86, respectively. Thus

the entire range of saturation values from 0 to 1 may be encountered in aeroacoustic applications,

which typically have source ranges from meters to kilometers.

Figure 3 illustrates the coherence of the scattered signals, γmn in (40), as a function of the sensor

separation, ρ. The extinction coefficients in (50), (51) are computed at frequency f = 100 Hz and

source range do = 1, 000 m, with mostly cloudy, calm conditions (Ω = 0.86). Note the coherence

is nearly perfect for sensor separations ρ < 1 m, but the coherence declines steeply for large

separations, with slope −0.0044 m−1 at ρ = 10 m.

2.2.4 Multiple frequencies and sources

The model in (49) is for a single source that emits a single frequency, ω = 2πfo rad/s. The complex

envelope processing in (2) and Figure 2 is a function of the source frequency. We can extend the

model in (49) to the case of K sources that emit tones at L frequencies ω1, . . . , ωL, as follows:

z̃(iTs;ωl) =

K∑

k=1

√
Sk(ωl) ejθk,l (ak(ωl) ◦ ũk(iTs;ωl)) + w̃(iTs;ωl),

i = 1, . . . , T
l = 1, . . . , L

(52)

= ([a1(ωl) . . . aK(ωl)] ◦ [ũ1(iTs;ωl) . . . ũK(iTs;ωl)])




√
S1(ωl) ejθ1,l

...√
SK(ωl) ejθK,l


 + w̃(iTs;ωl)

4
=

(
A(ωl) ◦ Ũ(iTs;ωl)

)
p̃(ωl) + w̃(iTs;ωl). (53)

In (52), Sk(ωl) is the average power of source k at frequency ωl, ak(ωl) is the steering vector for

source k at frequency ωl as in (20), ũk(iTs;ωl) is the scattering of source k at frequency ωl at
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Figure 3: Evaluation of the coherence of the scattered signals measured at sensors with separation
ρ using (40) and (50), (51) with f = 100 Hz, do = 1, 000 m, Ω = 0.86, and mostly cloudy, calm
conditions.

time sample i, and T is the number of time samples. In (53), the steering vector matrices A(ω l),

the scattering matrices Ũ(iTs;ωl), and the source amplitude vectors p̃(ωl) for l = 1, . . . , L and

i = 1, . . . , T , are defined by the context. If the sample spacing Ts is chosen appropriately, then the

samples at a given frequency ωl are independent in time. We will also model the scattered signals at

different frequencies as independent. Cross-frequency coherence has been studied theoretically and

experimentally, with [9, 20] presenting experimental studies in the atmosphere. However, models

for cross-frequency coherence in the atmosphere are at a very preliminary stage. It may be possible

to revise the assumption of independent scattering at different frequencies as better models become

available.

The covariance matrix at frequency ωl is, by extending the discussion following (49),

Cz̃(ωl) =

K∑

k=1

Sk(ωl)Ωk(ωl)
[
Γk(ωl) ◦

(
ak(ωl)ak(ωl)

H
)]

+ σw̃(ωl)
2 I, (54)

where the scattered signals from different sources are assumed to be independent. If we assume full

saturation (Ωk(ωl) = 1) and negligible coherence loss across the array aperture (Γk(ωl) = 11T ),

then the sensor signals in (52) have zero mean, and the covariance matrix in (54) reduces to the
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familiar correlation matrix of the form

Rz̃(0;ωl) = E
{
z̃(iTs;ωl) z̃(iTs;ωl)

H
}

= A(ωl)S(ωl)A(ωl)
H + σw̃(ωl)

2 I (Ωk(ωl) = 1 and no coherence loss), (55)

where S(ωl) is a diagonal matrix with S1(ωl), . . . , SK(ωl) along the diagonal.1

3 Signal Processing

In this section, we discuss signal processing issues for aeroacoustic sensor networks. The signal

processing takes into account the source and propagation models presented in the previous section,

as well as minimization of the communication bandwidth between sensor nodes connected by a

wireless link. We begin with angle of arrival (AOA) estimation using a single sensor array in

Section 3.1. Then we discuss source localization with multiple sensor arrays in Section 3.2, and we

briefly describe implications for detection and classification algorithms in Section 3.3.

3.1 Angle of arrival estimation

We discuss narrowband AOA estimation with scattering in Section 3.1.1, and then we discuss

wideband AOA estimation without scattering in Section 3.1.2. To our knowledge, the general case

of wideband AOA estimation with multiple sources and scattering has not been studied.

3.1.1 Narrowband AOA estimation with scattering

In this section, we review some performance analyses and algorithms that have been investigated

for narrowband AOA estimation with scattering. Most of the methods are based on scattering

models that are similar to the single-source model in Section 2.2.2 or the multiple-source model

in Section 2.2.4 at a single frequency. Many of the references cited below are formulated for

radio frequency (RF) channels, so the scattering is caused by multipath propagation and Doppler.

However, the models for the sensor data are similar to those presented in Section 2.2.

Wilson [5] analyzed the Cramér-Rao bound (CRB) on AOA estimation for a single source

using several models for atmospheric turbulence. Collier and Wilson extended the work [7, 8]

1For the fully saturated case with no coherence loss, we can relax the assumption that the scattered signals from
different sources are independent by replacing the diagonal matrix S(ωl) in (55) with a positive semidefinite matrix
with (m, n) element

�
Sm(ωl)Sn(ωl) ·E{ �um(iTs; ωl) �un(iTs; ωl)

∗}, where �um(iTs; ωl) is the scattered signal for source
m.
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to include unknown turbulence parameters in the CRB, along with the source AOA. Their CRB

analysis provides insight into the combinations of atmospheric conditions, array geometry, and

source location that are favorable for accurate AOA estimation. They note that accurate estimation

of elevation angle is difficult when the source and sensors are near the ground, so aeroacoustic

sensor arrays are most effective for azimuth estimation in these scenarios. Wilson and others have

incorporated the CRBs along with several AOA estimation algorithms and terrain models in the

ABFA software package [3, 4]. ABFA can be used to simulate scattering in various atmospheric

conditions, and Monte Carlo simulations test the performance of AOA estimation algorithms.

Other researchers that have investigated the problem of imperfect spatial coherence in the

context of narrowband AOA estimation include [21]–[29] and [19]. Pauraj and Kailath [21] presented

a MUSIC algorithm that incorporates nonideal spatial coherence, assuming that the coherence

losses are known. Song and Ritcey [22] provided maximum-likelihood (ML) methods for estimating

the angles of arrival and the parameters in a coherence model. Gershman et al. [23] provided a

procedure to jointly estimate the spatial coherence loss and the angles of arrival. In the series of

papers [24]–[27], stochastic and deterministic models were studied for imperfect spatial coherence,

and the performance of various AOA estimators was analyzed. Ghogho and Swami [28] presented

an algorithm for AOA estimation with multiple sources in the fully-saturated case. Their algorithm

exploits the Toeplitz structure of the B matrix in (42) for a uniform linear array (ULA).

None of the references [21]–[28] handle range of scattering scenarios from weak (Ω = 0) to strong

(Ω = 1). Fuks, Goldberg, and Messer [29] treat the case of Rician scattering on RF channels, so this

approach does include the entire range from weak to strong scattering. Indeed, the “Rice factor” in

the Rician fading model is related to the saturation parameter through (1−Ω)/Ω. The main focus

in [29] is on CRBs for AOA estimation. The recent paper by Stoica, Agrawal, and Ahgren [19]

appears to be the first general study of AOA estimation with non-zero mean signals in the presence

of spatially colored noise. The results in [19] are not immediately applicable to the aeroacoustic

model in Section 2.2, because [19] is oriented toward wireless communication systems in which the

source signals are under control of the designer. However, some results from [19] may be useful for

the passive aeroacoustic processing.

** Perhaps show example from [17] illustrating high coherence over the aperture

of an 8 ft diameter array? **

18



3.1.2 Wideband AOA estimation without scattering

From Brian’s draft of June 10, 2003:

Aeroacoustics is inherently an ultra-wideband array processing problem, e.g., operating in

[50, 250] Hz yields a 133% fractional bandwidth centered at 150 Hz. To process under the nar-

row band array assumptions will require the fractional bandwidth to be on the order of a few

percent or less, limiting the bandwidth to perhaps a few Hz in this example. The wide bandwidth

significantly complicates the array signal processing, including angle-of-arrival (AOA) estimation,

wideband Doppler compensation, beamforming, and blind source separation (which becomes con-

volutional). Conventional covariance-based narrow band AOA methods break down; the signal

subssubpace grows beyond a rank one contribution as the signal bandwidth increases.

A variety of methods are available for wideband AOA estimation, with varying complexity and

applicability. Application of these to specific practical problems leads to a complicated task of

appropriate procedure choice. We outline some of these methods and various tradeoffs, and de-

scribe some experimental results. Basic approaches include: classical delay-and-sum beamformer,

incoherent averaging over narrow band spatial spectra, maximum likelihood, coherent signal sub-

space methods, steered matrix techniques, spatial resampling (array interpolation), and frequency-

invariant beamforming. Useful overviews include Boehme [31], and Van Trees [48]. Significant

progress in this area has occured in the previous 15 years or so; major earlier efforts include the

underwater acoustics area, e.g., see Owsley [38].

Using frequency decomposition at each sensor, we can write (e.g., see [31])

Xi(ωk) = A(ωk)Si(ωk) + Ni(ωk), (56)

where i indexes the snapshot (time), and ωk is the kth frequency. The spectral density matrix

(SDM) at the frequency ωk can be defined as

Rx(ωk) = E[Xi(ωk)X
H
i (ωk)] = A(ωk)Rs(ωk)A

H(ωk) + RN (ωk). (57)

Equation (57) may be interpreted as the covariance matrix of the Fourier-transformed (narrowband)

observations (56). The noise is typically assumed to be Gaussian and spatially white, so that

RN (ωk) = σ2(ωk)I. Generalizations to spatially correlated noise are also possible, which may be

useful for modeling unknown spatial interference [ref?].

19



Working with an estimate R̂x(ωk), we may apply covariance-based high resolution AOA estima-

tors (MUSIC, MLE, etc.), although this results in many frequency-dependent angle estimates that

must be associated in some way for each source. A simple approach is to sum the resulting narrow-

band spatial spectra, e.g., see [44]; this is referred to as noncoherent averaging. This approach has

the advantages of straightforward extension of narrowband methods and relatively low complexity,

but can produce artifacts. And, noncoherent averaging requires that the SNRs after channelization

be adequate to support the chosen narrow band AOA estimator; in effect the method does not take

strong advantage of the wideband nature of the signal. However, loud sum-of-harmonic sources can

be processed in this manner with success.

A more general approach was first developed by Wang and Kaveh [49], based on the following

additive composition of transformed narrowband SDMs,

Rs(θi) =
∑

k

T (θi, ωk)Rx(ωk)T
H(θi, ωk), (58)

where θi is the ith AOA. Rs(θi) is referred to as the steered covariance matrix or the focused wideband

covariance matrix. The transformation matrix T (θi, ωk), sometimes called the focusing matrix, can

be viewed as selecting delays to coincide with delay-sum beamforming, so that the transformation

depends on both AOA and frequency. Viewed in another way, the transformation matrix acts

to align the signal subspaces, so that the resulting matrix Rs(θi) has a rank one contribution

from a wideband source at angle θi. Now, narrowband covariance-based methods may be applied

to the collection Rs(θi). This approach is generally referred to as the coherent subspace method

(CSM). CSM has significant advantages: it can handle correlated sources (due to the averaging over

frequencies), it averages over the entire source bandwidth, and has good statistical stability. On the

other hand, it requires significant complexity, and as originally proposed requires pre-estimation of

the AOAs which can lead to biased estimates [45].

A major drawback to CSM is the dependence of T on the the AOA. The most general form

requires generation and eigendecomposition of Rs(θi) for each frequency and each look angle; this is

clearly undesirable from a computational standpoint.2 The dependence of T on θi can be removed

in some cases by incorporating spatial interpolation, thereby greatly reducing the complexity. The

2In their original work, Wang and Kaveh relied on pre-estimates of the AOAs to lower the computational burden
[49].
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basic ideas are established by Krolik and Swingler in [36]; for an overview (including CSM methods)

see Krolik [37].

As an example, consider a uniform linear array (ULA) [36, 37], with d = λi/2 spacing. In

order to process over another wavelength choice λj (λj < λi), we could spatially interpolate the

physical array to a virtual array with the desired spacing (dj = λj/2). The spatial resampling

approach adjusts the spatial sampling interval d as a function of source wavelength λj . The result

is a simplification of (58) to

R̃(ωk) =
∑

k

T (ωk)Rx(ωk)T
H(ωk), (59)

where the angular dependence is now removed. The resampling acts to align the signal subspace

contributions over frequency, so that a single wideband source results in a rank one contribution to

R̃. Note that the spatial resampling is implicit in (59). Conventional narrow band AOA estimation

methods may now be applied to R̃ and, in contrast to CSM, this operation is conducted once for

all angles.

Extensions of [36] from ULAs to arbitrary array geometries can be undertaken, but the depen-

dence on look angle returns, and the resulting complexity is then similar to the CSM approaches.

To avoid this, Friedlander and Weiss considered spatial interpolation of an arbitrary physical array

to virtual arrays that are uniform and linear [34], thereby returning to a formulation like (59).

Doron et al. [33] developed a spatial interpolation method for forming a focused covariance matrix

with arbitrary arrays. The formulation relies on a truncated series expansion of plane waves in

polar coordinates. The array manifold vector is now separable, allowing focusing matrices that are

not a function of angle. The specific case of a circular array leads to an FFT-based implementation

that is appealing from a low complexity standpoint.

While the spatial resampling methods are clearly desirable from a complexity standpoint, ex-

periments indicate that they break down as the fractional bandwidth grows (see the examples that

follow). This depends on the particular method, and the original array geometry. This may be due

to accumulated interpolation error, but the precise cause is not entirely clear. As we have noted,

and show in our examples, fractional bandwidths of interest in aeroacoustics may easily exceed

100%. Thus, the spatial resampling methods should be applied with some caution in cases of very

large fractional bandwidth.
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3.1.3 Other work

Buckley and Griffiths [32] provide an alternative to CSM based on the wideband spatio-temporal

correlation matrix.

Sivanand et al. [41, 42, 43] show that the CSM focusing can be achieved in the time domain, and

treat the problem from a multichannel FIR filtering perspective. They also consider beamforming.

Valaee and Kabal [47] present an alternative formulation of focussing matrices for CSM using

a two-sided transformation (TCT). The method is an attempt to reduce the bias associated with

CSM.

3.1.4 Performance Analysis

Cramer-Rao bounds (CRBs) on wideband AOA estimation can be established using either a deter-

ministic or random Gaussian source model, in additive Gaussian noise. The basic results were shown

by Bangs [30]; see also Swingler [46]. The deterministic source case in (possibly colored) Gaussian

noise is described in Kay [35]. Performance analysis of spatial resampling methods is considered

by Friedlander and Weiss, who also provide CRBs, as well as a description of maximum-likehood

wideband AOA estimation [34].

These CRBs typically require known source statistics, and apply to unbiased estimates, whereas

prior spectrum knowledge is typically not available, and the above wideband methods may result

in biased estimates. Nevertheless, the CRB provides a valuable fundamental performance bound.

3.1.5 Wideband Beamforming

Basic extensions of narrow band beamforming methods are reviewed in Van Trees [48, chpt. 6],

including delay-sum and wideband minimum variance distortionless response (MVDR) techniques.

The CSM techniques also extend to wideband beamforming, e.g., see Yang and Kaveh [50].

3.1.6 Experiments

Example(s) and comparisons [39, 40].

3.1.7 Acknowledgements

Tien Pham.
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3.2 Localization and tracking

Motivate issues in [17]: Array of arrays, large baselines, distributed signal processing versus com-

munication bandwidth, signal coherence at widely separated sensors is not covered by small-scale

models discussed in Section 2.

Physical models do not apply to long baselines, so we have little theoretical guidance about

how much signal coherence to expect at widely spaced sensors. Our approach in [17]:

• Model sensor measurements as wideband Gaussian random processes with frequency-dependent

coherence

• Consider zero-mean (strong scattering case), since plane waves are useless for time-delay

estimation (TDE), and also because long baseline between sensors implies large distance to

target, and large propagation distance tends toward strong scattering.

Show examples of coherence at widely spaced sensors

Communication versus distributed signal processing hierarchy:

1. Joint processing of all sensor data at a central node (maximum comm. BW, optimum perfor-

mance)

2. Pass bearings from nodes, plus data from one sensor to enable TDE between pairs of sensors

at central node

3. Pass bearings from nodes, triangulate the bearings at central node

Summarize conclusions: CRB says that bearings plus TDE with sensor pairs is nearly optimal,

with significant savings in communication bandwidth, and significant improvement in localization

accuracy compared with bearings-only triangulation. However, are the CRBs achievable? We

study TDE with coherence losses caused by scattering. Need threshold coherence for a given SNR,

fractional BW, and time-BW product. Implies for sources with sum-of-harmonics signature, need

large time-BW product, but this is limited by source motion. Bring in Doppler . . . Also discuss

accounting for propagation time in the triangulation (refer to Kaplan?).

Conclusions: Need large SNR and time-BW product to achieve TDE CRBs, so in many cases,

triangulation of bearings is optimum.
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Show examples: TDE success with synthetic, wideband, non-moving source. TDE failure with

moving ground vehicle. Cite standard references on triangulation of bearings . . .

Ways to deal with moving sources:

• Our moving beamformer in [52], based on Gershman work.

• K. Bell’s penalized ML for tracking bearings . . .

• Paper on tracking in MSS ’02 by Dave Hillis et. al. . . . data association and other issues

• Kalman filter tracker (Bell, Kaplan, Hillis, others)

• Data association problem is worsened by aspect angle and Doppler. However, iterative pro-

cessing may allow aspect angle and Doppler to be estimated and used to improve the data

association.

3.3 Detection and classification

Specialize model to the energy of signals . . .

Summarize probability of detection, from Keith’s papers, e.g., [3] and [4].

Classification:

• Inherently difficult, because some vehicles have similar signatures

• Made more difficult by scattering during propagation, dependence of signatures on aspect-

angle and source dynamics (change in velocity, Doppler)

• Show example from [51] with impact of scattering on harmonic amplitude signatures.

• Perhaps new classification results (probably won’t be available).

• Open issues, such as whether knowledge of aspect angle (from tracker) can improve classifi-

cation accuracy?

4 Concluding Remarks

Fill in . . . Mention Doppler estimation and other continuing work.
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