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Phasor Handout, Part 2

Adding Phasors

The power and utility of the phasor representation really shows up when combining oscilla-
tions. Consider two oscillations, both with the same angular frequency ω, but with different
amplitudes and phases:

y1(t) = A1 cos (ωt + φ1) and y2(t) = A2 cos (ωt + φ2)

The superposition of these two oscillations ytot = y1 + y2 is very messy to calculate alge-
braically; however, it’s much simpler using the phasor method. Both oscillations can be
placed onto a single phasor diagram,

and since they have the same angular frequency, these phasors will rotate together as time
passes. That is, the angle between the phasors will always be ∆φ = φ2 − φ1.
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The superposition of these two oscillations will also be an oscillation with angular frequency
ω. Therefore, we can add the two phasors vectorially and the resultant phasor will describe
the superposition of the two oscillations.

The resultant phasor will have its own amplitude and phase, determined from the addition
of the two superposed phasors. The amplitude of the resultant will be less than the sum of
the two original phasor amplitudes (unless ∆φ = 0) and the phase of the resultant will be
something between the phases of the two original phasors.

Examples

Ex 2-1: You’re sitting in a boat in the middle of a calm lake. Suddenly a motor boat drives
by, producing waves that would oscillate your boat up and down as follows:

y1(t) = A1 cos (ωt + φ1)

where A1 = 25 cm, ω = 2π
3

, and φ1 = π
6
. At the same time, another motor boat drives by,

producing waves that would oscillate your boat up and down as follows:

y2(t) = A2 cos (ωt + φ2)

where A2 = 15 cm, ω = 2π
3

, and φ1 = π
3
. However, since both waves impact the boat

simultaneously, the actual oscillation of your boat is the superposition of these two waves.
How much does your boat move up and down as a result of the combination of these waves?
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The phasor diagram for these two oscillations looks like this:

The resultant phasor can be determined from the vector addition of the phasors.

Phasor x̂ ŷ
1 25 cos

(
π
6

)
25 sin

(
π
6

)
= 21.6 = 12.5

2 15 cos
(

π
3

)
15 sin

(
π
3

)
= 7.5 = 13.0

Total 29.1 25.5

So, the amplitude of the resultant phasor is Atot =
√

29.12 + 25.52 = 38.7 cm, and its initial

phase is φtot = tan−1
(

25.5
29.1

)
= 0.72 rad.

We can write the superposition as

ytot = 38.7 cos (ωt + 0.72).
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Ex 2-2 Two radio towers, A and B, separated by 20 m, broadcast the same radio signal of
wavelength λ = 12 m. You’re standing at the point P indicated in the figure with your radio
wave amplitude meter.

With only tower A broadcasting, you measure a wave amplitude of 7 (in some unspecified
unit). With only tower B broadcasting, you measure a wave amplitude of 5. What amplitude
do you measure when both towers are broadcasting?

Here we’re interested in the superposition of the waves from the two towers. We aren’t
explicitly given the phase difference between the towers, but we can figure it out because we
know the distances from point P to each tower. If the waves leave the two towers in phase,
they won’t necessarily be in phase when they reach point P because the waves from tower
B have to travel farther. How much farther? Well, the distance between tower B and point
P is

√
502 + 202 = 53.85 m, so the waves from tower B have to travel 3.85 m farther. That

means the waves from tower A will be 3.85 m ahead of the waves from Tower B.

We can turn that distance difference into a phase difference for the waves. The path length
difference ∆r = 3.85 m produces 3.85

12
= 0.32 wavelengths of difference between the two waves

as they arrive at point P .

If the waves from Tower A arrived exactly one wavelength ahead of the waves from Tower
B, the signals would add constructively. The phase difference would be 2π, and peaks and
troughs of the two waves would be aligned. In this case, however, the waves from Tower
A arrive only 0.32 wavelengths ahead of the waves from Tower B. Consequently, the phase
difference ∆φ is

∆φ = 2π
∆r

λ
= 2π

3.85

12
= 2.0 rad

We can then write expressions for the two oscillations at point P as follows:

yA(t) = 7 cos
(
ωt + 2.0

)
yB(t) = 5 cos

(
ωt

)
Why did I pick zero initial phase for the signal from Tower B? Because I could. In this case

(and in most cases we’ll deal with), we’re only interested in the phase difference between
signals. Therefore, I can always choose to describe one wave with zero initial phase, and
then put the phase difference into the expression for the other wave. With one phasor on
the horizontal axis, the phasor addition is just easier.
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Now we can construct a phasor diagram for the two oscillations,

Once again, the resultant phasor can be determined from the vector addition of the phasors.

Phasor x̂ ŷ
1 5 cos

(
0
)

5 sin
(
0
)

= 5 = 0
2 7 cos

(
2.0

)
7 sin

(
2.0

)
= −2.9 = 6.4

Total 2.1 6.4

So, the amplitude of the resultant phasor is Atot =
√

2.12 + 6.42 = 6.7, and its initial phase

is φtot = tan−1
(

6.4
2.1

)
= 1.25 rad.

We can write the superposed signal amplitude as

ytot = 6.7 cos (ωt + 1.25).
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A 107 - Phasor Addition

Write the superposition of the following two oscillations

x1 = 3 cos
(π

3
t
)

x2 = 5 cos
(π

3
t +

π

3

)
in the form

y3 = A3 cos
(
ωt + φ3

)
and solve for A3 and φ3.

A 108 - Sonorous Symphony in C

You’re sitting in the Weis Center listening to the “Sonorous Symphony in C,” which consists
of a single 128 Hz tone played through two speakers separated by 5 m on stage. Both speakers
emit sound waves in phase.

You happen to be sitting at the point P in the above diagram, 5 m to the left of the leftmost
speaker, and 15 m back from the stage.

If the wave amplitude at your location from each speaker individually is A, what is the
amplitude of the combined waves from both speakers at your location?
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