
How to Think Like a Computer Scientist

Java Version 5.0.1

How to Think Like a Computer Scientist

Java Version 5.0.1

Allen B. Downey

Olin College

Needham, Massachusetts

Copyright c© 2008 Allen Downey.

Permission is granted to copy, distribute, and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license
is included in the appendix entitled “GNU Free Documentation License.”

The GNU Free Documentation License is available from www.gnu.org or by
writing to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307, USA.

The original form of this book is LATEX source code. Compiling this LATEX source
has the effect of generating a device-independent representation of a textbook,
which can be converted to other formats and printed.

The LATEX source for this book is available from

http://greenteapress.com/thinkjava

This book was typeset using LATEX and LyX. The illustrations were drawn in
xfig. All of these are free, open-source programs.

Contents

1 The way of the program 1

1.1 What is a programming language? 1

1.2 What is a program? . 3

1.3 What is debugging? . 4

1.4 Formal and natural languages 6

1.5 The first program . 7

1.6 Glossary . 9

2 Variables and types 11

2.1 More printing . 11

2.2 Variables . 12

2.3 Assignment . 13

2.4 Printing variables . 14

2.5 Keywords . 15

2.6 Operators . 15

2.7 Order of operations . 16

2.8 Operators for Strings . 17

2.9 Composition . 17

2.10 Glossary . 18

3 Methods 19

3.1 Floating-point . 19

3.2 Converting from double to int 20

6 Contents

3.3 Math methods . 21

3.4 Composition . 22

3.5 Adding new methods . 22

3.6 Classes and methods . 24

3.7 Programs with multiple methods 25

3.8 Parameters and arguments . 25

3.9 Stack diagrams . 27

3.10 Methods with multiple parameters 27

3.11 Methods with results . 28

3.12 Glossary . 28

4 Conditionals, graphics and recursion 31

4.1 The modulus operator . 31

4.2 Conditional execution . 31

4.3 Alternative execution . 32

4.4 Chained conditionals . 33

4.5 Nested conditionals . 33

4.6 The return statement . 34

4.7 Type conversion . 34

4.8 Slates and Graphics objects . 35

4.9 Invoking methods on a Graphics object 36

4.10 Coordinates . 37

4.11 A lame Mickey Mouse . 37

4.12 Other drawing commands . 38

4.13 Recursion . 39

4.14 Stack diagrams for recursive methods 40

4.15 Convention and divine law . 41

4.16 Glossary . 42

Contents 7

5 Fruitful methods 45

5.1 Return values . 45

5.2 Program development . 47

5.3 Composition . 49

5.4 Overloading . 49

5.5 Boolean expressions . 50

5.6 Logical operators . 51

5.7 Boolean methods . 52

5.8 More recursion . 52

5.9 Leap of faith . 55

5.10 One more example . 55

5.11 Glossary . 56

6 Iteration 57

6.1 Multiple assignment . 57

6.2 Iteration . 58

6.3 The while statement . 58

6.4 Tables . 60

6.5 Two-dimensional tables . 61

6.6 Encapsulation and generalization 62

6.7 Methods . 63

6.8 More encapsulation . 63

6.9 Local variables . 64

6.10 More generalization . 64

6.11 Glossary . 66

7 Strings and things 67

7.1 Invoking methods on objects . 67

7.2 Length . 68

7.3 Traversal . 69

7.4 Run-time errors . 69

8 Contents

7.5 Reading documentation . 69

7.6 The indexOf method . 70

7.7 Looping and counting . 71

7.8 Increment and decrement operators 72

7.9 Character arithmetic . 72

7.10 Strings are immutable . 74

7.11 Strings are incomparable . 74

7.12 Glossary . 75

8 Interesting objects 77

8.1 What’s interesting? . 77

8.2 Packages . 77

8.3 Point objects . 78

8.4 Instance variables . 79

8.5 Objects as parameters . 79

8.6 Rectangles . 80

8.7 Objects as return types . 80

8.8 Objects are mutable . 81

8.9 Aliasing . 81

8.10 null . 82

8.11 Garbage collection . 83

8.12 Objects and primitives . 84

8.13 Glossary . 84

9 Create your own objects 87

9.1 Class definitions and object types 87

9.2 Time . 88

9.3 Constructors . 89

9.4 More constructors . 89

9.5 Creating a new object . 90

9.6 Printing an object . 91

Contents 9

9.7 Operations on objects . 92

9.8 Pure functions . 92

9.9 Modifiers . 94

9.10 Fill-in methods . 95

9.11 Which is best? . 95

9.12 Incremental development vs. planning 95

9.13 Generalization . 97

9.14 Algorithms . 97

9.15 Glossary . 98

10 Arrays 99

10.1 Accessing elements . 99

10.2 Copying arrays . 100

10.3 for loops . 101

10.4 Arrays and objects . 102

10.5 Array length . 102

10.6 Random numbers . 103

10.7 Statistics . 103

10.8 Array of random numbers . 103

10.9 Counting . 104

10.10 Many buckets . 105

10.11 A single-pass solution . 107

10.12 Glossary . 108

11 Arrays of Objects 109

11.1 Composition . 109

11.2 Card objects . 109

11.3 The printCard method . 111

11.4 The sameCard method . 112

11.5 The compareCard method . 113

11.6 Arrays of cards . 114

10 Contents

11.7 The printDeck method . 115

11.8 Searching . 116

11.9 Decks and subdecks . 119

11.10 Glossary . 119

12 Objects of Arrays 121

12.1 Shuffling . 122

12.2 Sorting . 123

12.3 Subdecks . 124

12.4 Shuffling and dealing . 125

12.5 Mergesort . 125

12.6 Glossary . 127

13 Object-oriented programming 129

13.1 Programming languages and styles 129

13.2 Object and class methods . 130

13.3 The current object . 130

13.4 Complex numbers . 130

13.5 A function on Complex numbers 131

13.6 Another function on Complex numbers 132

13.7 A modifier . 132

13.8 The toString method . 133

13.9 The equals method . 134

13.10 Invoking one object method from another 134

13.11 Oddities and errors . 135

13.12 Inheritance . 135

13.13 Drawable rectangles . 136

13.14 The class hierarchy . 137

13.15 Object-oriented design . 137

13.16 Glossary . 137

Contents 11

14 Linked lists 139

14.1 References in objects . 139

14.2 The Node class . 139

14.3 Lists as collections . 141

14.4 Lists and recursion . 142

14.5 Infinite lists . 143

14.6 The fundamental ambiguity theorem 143

14.7 Object methods for nodes . 144

14.8 Modifying lists . 144

14.9 Wrappers and helpers . 145

14.10 The LinkedList class . 146

14.11 Invariants . 147

14.12 Glossary . 147

15 Stacks 149

15.1 Abstract data types . 149

15.2 The Stack ADT . 150

15.3 The Java Stack Object . 150

15.4 Wrapper classes . 151

15.5 Creating wrapper objects . 152

15.6 Creating more wrapper objects 152

15.7 Getting the values out . 152

15.8 Useful methods in the wrapper classes 153

15.9 Postfix expressions . 153

15.10 Parsing . 154

15.11 Implementing ADTs . 155

15.12 Array implementation of the Stack ADT 155

15.13 Resizing arrays . 156

15.14 Glossary . 158

12 Contents

16 Queues and Priority Queues 159

16.1 The queue ADT . 159

16.2 Veneer . 160

16.3 Linked Queue . 161

16.4 Circular buffer . 163

16.5 Priority queue . 166

16.6 Abstract class . 167

16.7 Array implementation of Priority Queue 167

16.8 A Priority Queue client . 169

16.9 The Golfer class . 170

16.10 Glossary . 171

17 Trees 173

17.1 A tree node . 173

17.2 Building trees . 174

17.3 Traversing trees . 175

17.4 Expression trees . 175

17.5 Traversal . 176

17.6 Encapsulation . 177

17.7 Defining an abstract class . 178

17.8 Implementing an abstract class 178

17.9 Array implementation of trees 179

17.10 The Vector class . 182

17.11 The Iterator class . 183

17.12 Glossary . 184

18 Heap 187

18.1 The Heap . 187

18.2 Performance analysis . 188

18.3 Analysis of mergesort . 190

18.4 Overhead . 191

Contents 13

18.5 Priority Queue implementations 191

18.6 Definition of a Heap . 192

18.7 Heap remove . 194

18.8 Heap insert . 195

18.9 Performance of heaps . 196

18.10 Heapsort . 197

18.11 Glossary . 198

19 Table 199

19.1 Arrays, Vectors and Tables . 199

19.2 The Table ADT . 200

19.3 The built-in Hashtable . 200

19.4 A Vector implementation . 202

19.5 The List abstract class . 204

19.6 Hash table implementation . 204

19.7 Hash Functions . 205

19.8 Resizing a hash table . 206

19.9 Performance of resizing . 207

19.10 Glossary . 207

A Program development plan 209

B Debugging 215

B.1 Compile-time errors . 215

B.2 Run-time errors . 217

B.3 Semantic errors . 221

C Input and Output in Java 225

D The Slate Class 227

14 Contents

Chapter 1

The way of the program

The goal of this book, and this class, is to teach you to think like a computer
scientist. I like the way computer scientists think because they combine some of
the best features of Mathematics, Engineering, and Natural Science. Like math-
ematicians, computer scientists use formal languages to denote ideas (specifi-
cally computations). Like engineers, they design things, assembling components
into systems and evaluating tradeoffs among alternatives. Like scientists, they
observe the behavior of complex systems, form hypotheses, and test predictions.

The single most important skill for a computer scientist is problem-solving.
By that I mean the ability to formulate problems, think creatively about solu-
tions, and express a solution clearly and accurately. As it turns out, the process
of learning to program is an excellent opportunity to practice problem-solving
skills. That’s why this chapter is called “The way of the program.”

On one level, you will be learning to program, which is a useful skill by itself.
On another level you will use programming as a means to an end. As we go
along, that end will become clearer.

1.1 What is a programming language?

The programming language you will be learning is Java, which is relatively new
(Sun released the first version in May, 1995). Java is an example of a high-level
language; other high-level languages you might have heard of are Pascal, C,
C++ and FORTRAN.

As you might infer from the name “high-level language,” there are also low-
level languages, sometimes referred to as machine language or assembly lan-
guage. Loosely-speaking, computers can only execute programs written in low-
level languages. Thus, programs written in a high-level language have to be
translated before they can run. This translation takes some time, which is a
small disadvantage of high-level languages.

2 The way of the program

But the advantages are enormous. First, it is much easier to program in a high-
level language; by “easier” I mean that the program takes less time to write, it’s
shorter and easier to read, and it’s more likely to be correct. Secondly, high-
level languages are portable, meaning that they can run on different kinds of
computers with few or no modifications. Low-level programs can only run on
one kind of computer, and have to be rewritten to run on another.

Due to these advantages, almost all programs are written in high-level languages.
Low-level languages are only used for a few special applications.

There are two ways to translate a program; interpreting or compiling. An
interpreter is a program that reads a high-level program and does what it says.
In effect, it translates the program line-by-line, alternately reading lines and
carrying out commands.

interpreter

source

code

The interpreter

reads the

source code...

... and the result

appears on

the screen.

A compiler is a program that reads a high-level program and translates it all at
once, before executing any of the commands. Often you compile the program
as a separate step, and then execute the compiled code later. In this case, the
high-level program is called the source code, and the translated program is
called the object code or the executable.

As an example, suppose you write a program in C. You might use a text editor to
write the program (a text editor is a simple word processor). When the program
is finished, you might save it in a file named program.c, where “program” is an
arbitrary name you make up, and the suffix .c is a convention that indicates
that the file contains C source code.

Then, depending on what your programming environment is like, you might
leave the text editor and run the compiler. The compiler would read your
source code, translate it, and create a new file named program.o to contain the
object code, or program.exe to contain the executable.

1.2 What is a program? 3

object

code executor

The compiler

reads the

source code...

... and generates

object code.

You execute the

program (one way

or another)...

... and the result

appears on

the screen.

source

code compiler

The Java language is unusual because it is both compiled and interpreted. In-
stead of translating Java programs into machine language, the Java compiler
generates Java byte code. Byte code is easy (and fast) to interpret, like ma-
chine language, but it is also portable, like a high-level language. Thus, it is
possible to compile a Java program on one machine, transfer the byte code to
another machine over a network, and then interpret the byte code on the other
machine. This ability is one of the advantages of Java over many other high-level
languages.

The compiler

reads the

source code...

... and the result

appears on

the screen.

source

code compiler code

byte

x.java x.class

... and generates

Java byte code. reads the byte

code...

interpreter

A Java interpreter

Although this process may seem complicated, the good news is that in most pro-
gramming environments (sometimes called development environments), these
steps are automated for you. Usually you will only have to write a program and
type a single command to compile and run it. On the other hand, it is useful
to know what the steps are that are happening in the background, so that if
something goes wrong you can figure out what it is.

1.2 What is a program?

A program is a sequence of instructions that specifies how to perform a com-
putation. The computation might be something mathematical, like solving a
system of equations or finding the roots of a polynomial, but it can also be
a symbolic computation, like searching and replacing text in a document or
(strangely enough) compiling a program.

The instructions (or commands, or statements) look different in different pro-
gramming languages, but there are a few basic functions that appear in just
about every language:

4 The way of the program

input: Get data from the keyboard, or a file, or some other device.

output: Display data on the screen or send data to a file or other device.

math: Perform basic mathematical operations like addition and multiplication.

testing: Check for certain conditions and execute the appropriate sequence of
statements.

repetition: Perform some action repeatedly, usually with some variation.

Believe it or not, that’s pretty much all there is to it. Every program you’ve ever
used, no matter how complicated, is made up of functions that look more or less
like these. Thus, one way to describe programming is the process of breaking
a large, complex task up into smaller and smaller subtasks until eventually the
subtasks are simple enough to be performed with one of these simple functions.

1.3 What is debugging?

Programming is a complex process, and since it is done by human beings, it often
leads to errors. For whimsical reasons, programming errors are called bugs and
the process of tracking them down and correcting them is called debugging.

There are a few different kinds of errors that can occur in a program, and it is
useful to distinguish between them in order to track them down more quickly.

1.3.1 Compile-time errors

The compiler can only translate a program if the program is syntactically cor-
rect; otherwise, the compilation fails and you will not be able to run your
program. Syntax refers to the structure of your program and the rules about
that structure.

For example, in English, a sentence must begin with a capital letter and end
with a period. this sentence contains a syntax error. So does this one

For most readers, a few syntax errors are not a significant problem, which is
why we can read the poetry of e e cummings without spewing error messages.

Compilers are not so forgiving. If there is a single syntax error anywhere in
your program, the compiler will print an error message and quit, and you will
not be able to run your program.

To make matters worse, there are more syntax rules in Java than there are in
English, and the error messages you get from the compiler are often not very
helpful. During the first few weeks of your programming career, you will prob-
ably spend a lot of time tracking down syntax errors. As you gain experience,
though, you will make fewer errors and find them faster.

1.3 What is debugging? 5

1.3.2 Run-time errors

The second type of error is a run-time error, so-called because the error does
not appear until you run the program. In Java, run-time errors occur when the
interpreter is running the byte code and something goes wrong.

The good news for now is that Java tends to be a safe language, which means
that run-time errors are rare, especially for the simple sorts of programs we will
be writing for the next few weeks.

Later on in the semester, you will probably start to see more run-time errors,
especially when we start talking about objects and references (Chapter 8).

In Java, run-time errors are called exceptions, and in most environments they
appear as windows or dialog boxes that contain information about what hap-
pened and what the program was doing when it happened. This information is
useful for debugging.

1.3.3 Logic errors and semantics

The third type of error is the logical or semantic error. If there is a logical
error in your program, it will compile and run successfully, in the sense that
the computer will not generate any error messages, but it will not do the right
thing. It will do something else. Specifically, it will do what you told it to do.

The problem is that the program you wrote is not the program you wanted to
write. The meaning of the program (its semantics) is wrong. Identifying logical
errors can be tricky, since it requires you to work backwards by looking at the
output of the program and trying to figure out what it is doing.

1.3.4 Experimental debugging

One of the most important skills you will acquire in this class is debugging.
Although it can be frustrating, debugging is one of the most intellectually rich,
challenging, and interesting parts of programming.

In some ways debugging is like detective work. You are confronted with clues
and you have to infer the processes and events that lead to the results you see.

Debugging is also like an experimental science. Once you have an idea what
is going wrong, you modify your program and try again. If your hypothesis
was correct, then you can predict the result of the modification, and you take
a step closer to a working program. If your hypothesis was wrong, you have to
come up with a new one. As Sherlock Holmes pointed out, “When you have
eliminated the impossible, whatever remains, however improbable, must be the
truth.” (from A. Conan Doyle’s The Sign of Four).

For some people, programming and debugging are the same thing. That is,
programming is the process of gradually debugging a program until it does what

6 The way of the program

you want. The idea is that you should always start with a working program
that does something, and make small modifications, debugging them as you go,
so that you always have a working program.

For example, Linux is an operating system that contains thousands of lines of
code, but it started out as a simple program Linus Torvalds used to explore
the Intel 80386 chip. According to Larry Greenfield, “One of Linus’s earlier
projects was a program that would switch between printing AAAA and BBBB.
This later evolved to Linux” (from The Linux Users’ Guide Beta Version 1).

In later chapters I will make more suggestions about debugging and other pro-
gramming practices.

1.4 Formal and natural languages

Natural languages are the languages that people speak, like English, Spanish,
and French. They were not designed by people (although people try to impose
some order on them); they evolved naturally.

Formal languages are languages that are designed by people for specific appli-
cations. For example, the notation that mathematicians use is a formal language
that is particularly good at denoting relationships among numbers and symbols.
Chemists use a formal language to represent the chemical structure of molecules.
And most importantly:

Programming languages are formal languages that have
been designed to express computations.

As I mentioned before, formal languages tend to have strict rules about syntax.
For example, 3 + 3 = 6 is a syntactically correct mathematical statement, but
3 = +6$ is not. Also, H2O is a syntactically correct chemical name, but 2Zz is
not.

Syntax rules come in two flavors, pertaining to tokens and structure. Tokens
are the basic elements of the language, like words and numbers and chemical
elements. One of the problems with 3=+6$ is that $ is not a legal token in
mathematics (at least as far as I know). Similarly, 2Zz is not legal because
there is no element with the abbreviation Zz.

The second type of syntax rule pertains to the structure of a statement; that is,
the way the tokens are arranged. The statement 3=+6$ is structurally illegal,
because you can’t have a plus sign immediately after an equals sign. Similarly,
molecular formulas have to have subscripts after the element name, not before.

When you read a sentence in English or a statement in a formal language, you
have to figure out what the structure of the sentence is (although in a natural
language you do this unconsciously). This process is called parsing.

For example, when you hear the sentence, “The other shoe fell,” you understand
that “the other shoe” is the subject and “fell” is the verb. Once you have

1.5 The first program 7

parsed a sentence, you can figure out what it means, that is, the semantics of
the sentence. Assuming that you know what a shoe is, and what it means to
fall, you will understand the general implication of this sentence.

Although formal and natural languages have many features in common—tokens,
structure, syntax and semantics—there are many differences.

ambiguity: Natural languages are full of ambiguity, which people deal with
by using contextual clues and other information. Formal languages are
designed to be nearly or completely unambiguous, which means that any
statement has exactly one meaning, regardless of context.

redundancy: In order to make up for ambiguity and reduce misunderstand-
ings, natural languages employ lots of redundancy. As a result, they are
often verbose. Formal languages are less redundant and more concise.

literalness: Natural languages are full of idiom and metaphor. If I say, “The
other shoe fell,” there is probably no shoe and nothing falling. Formal
languages mean exactly what they say.

People who grow up speaking a natural language (everyone) often have a hard
time adjusting to formal languages. In some ways the difference between formal
and natural language is like the difference between poetry and prose, but more
so:

Poetry: Words are used for their sounds as well as for their meaning, and the
whole poem together creates an effect or emotional response. Ambiguity
is not only common but often deliberate.

Prose: The literal meaning of words is more important and the structure con-
tributes more meaning. Prose is more amenable to analysis than poetry,
but still often ambiguous.

Programs: The meaning of a computer program is unambiguous and literal,
and can be understood entirely by analysis of the tokens and structure.

Here are some suggestions for reading programs (and other formal languages).
First, remember that formal languages are much more dense than natural lan-
guages, so it takes longer to read them. Also, the structure is very important, so
it is usually not a good idea to read from top to bottom, left to right. Instead,
learn to parse the program in your head, identifying the tokens and interpret-
ing the structure. Finally, remember that the details matter. Little things like
spelling errors and bad punctuation, which you can get away with in natural
languages, can make a big difference in a formal language.

1.5 The first program

Traditionally the first program people write in a new language is called “Hello,
World.” because all it does is print the words “Hello, World.” In Java, this
program looks like this:

8 The way of the program

class Hello {

// main: generate some simple output

public static void main (String[] args) {

System.out.println ("Hello, world.");

}

}

Some people judge the quality of a programming language by the simplicity
of the “Hello, World.” program. By this standard, Java does not do very
well. Even the simplest program contains a number of features that are hard
to explain to beginning programmers. We are going to ignore a lot of them for
now, but I will explain a few.

All programs are made up of class definitions, which have the form:

class CLASSNAME {

public static void main (String[] args) {

STATEMENTS

}

}

Here CLASSNAME indicates an arbitrary name that you make up. The class name
in the example is Hello.

In the second line, you should ignore the words public static void for now,
but notice the word main. main is a special name that indicates the place in the
program where execution begins. When the program runs, it starts by executing
the first statement in main and it continues, in order, until it gets to the last
statement, and then it quits.

There is no limit to the number of statements that can be in main, but the
example contains only one. It is a print statement, meaning that it prints
a message on the screen. It is a bit confusing that “print” sometimes means
“display something on the screen,” and sometimes means “send something to
the printer.” In this book I won’t say much about sending things to the printer;
we’ll do all our printing on the screen.

The command that prints things on the screen is System.out.println, and the
thing between the parentheses is the thing that will get printed. At the end of
the statement there is a semi-colon (;), which is required at the end of every
statement.

There are a few other things you should notice about the syntax of this pro-
gram. First, Java uses squiggly-braces ({ and }) to group things together. The
outermost squiggly-braces (lines 1 and 8) contain the class definition, and the
inner braces contain the definition of main.

Also, notice that line 3 begins with //. This indicates that this line contains a
comment, which is a bit of English text that you can put in the middle of a

1.6 Glossary 9

program, usually to explain what the program does. When the compiler sees a
//, it ignores everything from there until the end of the line.

In the first lab you will compile and run this program, and also modify it in
various ways in order to see what the syntax rules are, and to see what error
messages the compiler generates when you violate one.

1.6 Glossary

problem-solving: The process of formulating a problem, finding a solution,
and expressing the solution.

high-level language: A programming language like Java that is designed to
be easy for humans to read and write.

low-level language: A programming language that is designed to be easy for
a computer to execute. Also called “machine language” or “assembly
language.”

formal language: Any of the languages people have designed for specific pur-
poses, like representing mathematical ideas or computer programs. All
programming languages are formal languages.

natural language: Any of the languages people speak that have evolved nat-
urally.

portability: A property of a program that can run on more than one kind of
computer.

interpret: To execute a program in a high-level language by translating it one
line at a time.

compile: To translate a program in a high-level language into a low-level lan-
guage, all at once, in preparation for later execution.

source code: A program in a high-level language, before being compiled.

object code: The output of the compiler, after translating the program.

executable: Another name for object code that is ready to be executed.

byte code: A special kind of object code used for Java programs. Byte code is
similar to a low-level language, but it is portable, like a high-level language.

algorithm: A general process for solving a category of problems.

bug: An error in a program.

syntax: The structure of a program.

semantics: The meaning of a program.

parse: To examine a program and analyze the syntactic structure.

10 The way of the program

syntax error: An error in a program that makes it impossible to parse (and
therefore impossible to compile).

exception: An error in a program that makes it fail at run-time. Also called
a run-time error.

logical error: An error in a program that makes it do something other than
what the programmer intended.

debugging: The process of finding and removing any of the three kinds of
errors.

Chapter 2

Variables and types

2.1 More printing

As I mentioned in the last chapter, you can put as many statements as you want
in main. For example, to print more than one line:

class Hello {

// main: generate some simple output

public static void main (String[] args) {

System.out.println ("Hello, world."); // print one line

System.out.println ("How are you?"); // print another

}

}

Also, as you can see, it is legal to put comments at the end of a line, as well as
on a line by themselves.

The phrases that appear in quotation marks are called strings, because they
are made up of a sequence (string) of letters. Actually, strings can contain any
combination of letters, numbers, punctuation marks, and other special charac-
ters.

println is short for “print line,” because after each line it adds a special char-
acter, called a newline, that causes the cursor to move to the next line of the
display. The next time println is invoked, the new text appears on the next
line.

Often it is useful to display the output from multiple print statements all on
one line. You can do this with the print command:

class Hello {

// main: generate some simple output

12 Variables and types

public static void main (String[] args) {

System.out.print ("Goodbye, ");

System.out.println ("cruel world!");

}

}

In this case the output appears on a single line as Goodbye, cruel world!.
Notice that there is a space between the word “Goodbye” and the second quo-
tation mark. This space appears in the output, so it affects the behavior of the
program.

Spaces that appear outside of quotation marks generally do not affect the be-
havior of the program. For example, I could have written:

class Hello {

public static void main (String[] args) {

System.out.print ("Goodbye, ");

System.out.println ("cruel world!");

}

}

This program would compile and run just as well as the original. The breaks
at the ends of lines (newlines) do not affect the program’s behavior either, so I
could have written:

class Hello { public static void main (String[] args) {

System.out.print ("Goodbye, "); System.out.println

("cruel world!");}}

That would work, too, although you have probably noticed that the program is
getting harder and harder to read. Newlines and spaces are useful for organizing
your program visually, making it easier to read the program and locate syntax
errors.

2.2 Variables

One of the most powerful features of a programming language is the ability
to manipulate variables. A variable is a named location that stores a value.
Values are things that can be printed and stored and (as we’ll see later) operated
on. The strings we have been printing ("Hello, World.", "Goodbye, ", etc.)
are values.

In order to store a value, you have to create a variable. Since the values we
want to store are strings, we will declare that the new variable is a string:

String fred;

This statement is a declaration, because it declares that the variable named
fred has the type String. Each variable has a type that determines what kind
of values it can store. For example, the int type can store integers, and it will
probably come as no surprise that the String type can store strings.

2.3 Assignment 13

You will notice that some types begin with a capital letter and some with lower-
case. We will learn the significance of this distinction later, but for now you
should take care to get it right. There is no such type as Int or string, and
the compiler will object if you try to make one up.

To create an integer variable, the syntax is int bob;, where bob is the arbitrary
name you made up for the variable. In general, you will want to make up variable
names that indicate what you plan to do with the variable. For example, if you
saw these variable declarations:

String firstName;

String lastName;

int hour, minute;

you could probably make a good guess at what values would be stored in them.
This example also demonstrates the syntax for declaring multiple variables with
the same type: hour and second are both integers (int type).

2.3 Assignment

Now that we have created some variables, we would like to store values in them.
We do that with an assignment statement.

fred = "Hello."; // give fred the value "Hello."

hour = 11; // assign the value 11 to hour

minute = 59; // set minute to 59

This example shows three assignments, and the comments show three different
ways people sometimes talk about assignment statements. The vocabulary can
be confusing here, but the idea is straightforward:

• When you declare a variable, you create a named storage location.

• When you make an assignment to a variable, you give it a value.

A common way to represent variables on paper is to draw a box with the name
of the variable on the outside and the value of the variable on the inside. This
figure shows the effect of the three assignment statements:

11

"Hello."

59

fred

hour

minute

For each variable, the name of the variable appears outside the box and the
value appears inside.

As a general rule, a variable has to have the same type as the value you assign
it. You cannot store a String in minute or an integer in fred.

14 Variables and types

On the other hand, that rule can be confusing, because there are many ways that
you can convert values from one type to another, and Java sometimes converts
things automatically. So for now you should remember the general rule, and
we’ll talk about special cases later.

Another source of confusion is that some strings look like integers, but they are
not. For example, fred can contain the string "123", which is made up of the
characters 1, 2 and 3, but that is not the same thing as the number 123.

fred = "123"; // legal

fred = 123; // not legal

2.4 Printing variables

You can print the value of a variable using the same commands we used to print
Strings.

class Hello {

public static void main (String[] args) {

String firstLine;

firstLine = "Hello, again!";

System.out.println (firstLine);

}

}

This program creates a variable named firstLine, assigns it the value "Hello,
again!" and then prints that value. When we talk about “printing a variable,”
we mean printing the value of the variable. To print the name of a variable, you
have to put it in quotes. For example: System.out.println ("firstLine");

If you want to get a little tricky, you could write

String firstLine;

firstLine = "Hello, again!";

System.out.print ("The value of firstLine is ");

System.out.println (firstLine);

The output of this program is

The value of firstLine is Hello, again!

I am pleased to report that the syntax for printing a variable is the same re-
gardless of the variable’s type.

int hour, minute;

hour = 11;

minute = 59;

System.out.print ("The current time is ");

System.out.print (hour);

System.out.print (":");

System.out.print (minute);

System.out.println (".");

2.5 Keywords 15

The output of this program is The current time is 11:59.

WARNING: It is common practice to use several print commands followed by
a println, in order to put multiple values on the same line. But you have
to be careful to remember the println at the end. In many environments,
the output from print is stored without being displayed until the println

command is invoked, at which point the entire line is displayed at once. If you
omit println, the program may terminate without ever displaying the stored
output!

2.5 Keywords

A few sections ago, I said that you can make up any name you want for your
variables, but that’s not quite true. There are certain words that are reserved
in Java because they are used by the compiler to parse the structure of your
program, and if you use them as variable names, it will get confused. These
words, called keywords, include public, class, void, int, and many more.

The complete list is available at

http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html

This site, provided by Sun, includes Java documentation I will be referring to
throughout the book.

Rather than memorize the list, I would suggest that you take advantage of a
feature provided in many Java development environments: code highlighting.
As you type, different parts of your program should appear in different colors.
For example, keywords might be blue, strings red, and other code black. If you
type a variable name and it turns blue, watch out! You might get some strange
behavior from the compiler.

2.6 Operators

Operators are special symbols that are used to represent simple computations
like addition and multiplication. Most of the operators in Java do exactly what
you would expect them to do, because they are common mathematical symbols.
For example, the operator for adding two integers is +.

The following are all legal Java expressions whose meaning is more or less ob-
vious:

1+1 hour-1 hour*60 + minute minute/60

Expressions can contain both variable names and numbers. In each case the
name of the variable is replaced with its value before the computation is per-
formed.

Addition, subtraction and multiplication all do what you expect, but you might
be surprised by division. For example, the following program:

16 Variables and types

int hour, minute;

hour = 11;

minute = 59;

System.out.print ("Number of minutes since midnight: ");

System.out.println (hour*60 + minute);

System.out.print ("Fraction of the hour that has passed: ");

System.out.println (minute/60);

would generate the following output:

Number of minutes since midnight: 719

Fraction of the hour that has passed: 0

The first line is what we expected, but the second line is odd. The value of the
variable minute is 59, and 59 divided by 60 is 0.98333, not 0. The reason for
the discrepancy is that Java is performing integer division.

When both of the operands are integers (operands are the things operators op-
erate on), the result must also be an integer, and by convention integer division
always rounds down, even in cases like this where the next integer is so close.

A possible alternative in this case is to calculate a percentage rather than a
fraction:

System.out.print ("Percentage of the hour that has passed: ");

System.out.println (minute*100/60);

The result is:

Percentage of the hour that has passed: 98

Again the result is rounded down, but at least now the answer is approximately
correct. In order to get an even more accurate answer, we could use a different
type of variable, called floating-point, that is capable of storing fractional values.
We’ll get to that in the next chapter.

2.7 Order of operations

When more than one operator appears in an expression the order of evaluation
depends on the rules of precedence. A complete explanation of precedence
can get complicated, but just to get you started:

• Multiplication and division take precedence (happen before) addition and
subtraction. So 2*3-1 yields 5, not 4, and 2/3-1 yields -1, not 1 (remem-
ber that in integer division 2/3 is 0).

• If the operators have the same precedence they are evaluated from left
to right. So in the expression minute*100/60, the multiplication happens
first, yielding 5900/60, which in turn yields 98. If the operations had gone
from right to left, the result would be 59*1 which is 59, which is wrong.

2.8 Operators for Strings 17

• Any time you want to override the rules of precedence (or you are not sure
what they are) you can use parentheses. Expressions in parentheses are
evaluated first, so 2 * (3-1) is 4. You can also use parentheses to make
an expression easier to read, as in (minute * 100) / 60, even though it
doesn’t change the result.

2.8 Operators for Strings

In general you cannot perform mathematical operations on Strings, even if the
strings look like numbers. The following are illegal (if we know that fred has
type String)

fred - 1 "Hello"/123 fred * "Hello"

By the way, can you tell by looking at those expressions whether fred is an
integer or a string? Nope. The only way to tell the type of a variable is to look
at the place where it is declared.

Interestingly, the + operator does work with Strings, although it does not do
exactly what you might expect. For Strings, the + operator represents con-
catenation, which means joining up the two operands by linking them end-to-
end. So "Hello, " + "world." yields the string "Hello, world." and fred

+ "ism" adds the suffix ism to the end of whatever fred is, which is often handy
for naming new forms of bigotry.

2.9 Composition

So far we have looked at the elements of a programming language—variables,
expressions, and statements—in isolation, without talking about how to combine
them.

One of the most useful features of programming languages is their ability to
take small building blocks and compose them. For example, we know how to
multiply numbers and we know how to print; it turns out we can do both at the
same time:

System.out.println (17 * 3);

Actually, I shouldn’t say “at the same time,” since in reality the multiplication
has to happen before the printing, but the point is that any expression, involving
numbers, strings, and variables, can be used inside a print statement. We’ve
already seen one example:

System.out.println (hour*60 + minute);

But you can also put arbitrary expressions on the right-hand side of an assign-
ment statement:

int percentage;

percentage = (minute * 100) / 60;

18 Variables and types

This ability may not seem so impressive now, but we will see other examples
where composition makes it possible to express complex computations neatly
and concisely.

WARNING: There are limits on where you can use certain expressions; most
notably, the left-hand side of an assignment statement has to be a variable name,
not an expression. That’s because the left side indicates the storage location
where the result will go. Expressions do not represent storage locations, only
values. So the following is illegal: minute+1 = hour;.

2.10 Glossary

variable: A named storage location for values. All variables have a type, which
is declared when the variable is created.

value: A number or string (or other thing to be named later) that can be stored
in a variable. Every value belongs to one type.

type: A set of values. The type of a variable determines which values can be
stored there. So far, the types we have seen are integers (int in Java) and
strings (String in Java).

keyword: A reserved word that is used by the compiler to parse programs. You
cannot use keywords, like public, class and void as variable names.

statement: A line of code that represents a command or action. So far, the
statements we have seen are declarations, assignments, and print state-
ments.

declaration: A statement that creates a new variable and determines its type.

assignment: A statement that assigns a value to a variable.

expression: A combination of variables, operators and values that represents
a single result value. Expressions also have types, as determined by their
operators and operands.

operator: A special symbol that represents a simple computation like addition,
multiplication or string concatenation.

operand: One of the values on which an operator operates.

precedence: The order in which operations are evaluated.

concatenate: To join two operands end-to-end.

composition: The ability to combine simple expressions and statements into
compound statements and expressions in order to represent complex com-
putations concisely.

Chapter 3

Methods

3.1 Floating-point

In the last chapter we had some problems dealing with numbers that were not
integers. We worked around the problem by measuring percentages instead of
fractions, but a more general solution is to use floating-point numbers, which
can represent fractions as well as integers. In Java, the floating-point type is
called double.

You can create floating-point variables and assign values to them using the same
syntax we used for the other types. For example:

double pi;

pi = 3.14159;

It is also legal to declare a variable and assign a value to it at the same time:

int x = 1;

String empty = "";

double pi = 3.14159;

In fact, this syntax is quite common. A combined declaration and assignment
is sometimes called an initialization.

Although floating-point numbers are useful, they are often a source of confusion
because there seems to be an overlap between integers and floating-point num-
bers. For example, if you have the value 1, is that an integer, a floating-point
number, or both?

Strictly speaking, Java distinguishes the integer value 1 from the floating-point
value 1.0, even though they seem to be the same number. They belong to
different types, and strictly speaking, you are not allowed to make assignments
between types. For example, the following is illegal:

int x = 1.1;

20 Methods

because the variable on the left is an int and the value on the right is a double.
But it is easy to forget this rule, especially because there are places where Java
will automatically convert from one type to another. For example:

double y = 1;

should technically not be legal, but Java allows it by converting the int to a
double automatically. This leniency is convenient, but it can cause problems;
for example:

double y = 1 / 3;

You might expect the variable y to be given the value 0.333333, which is a legal
floating-point value, but in fact it will get the value 0.0. The reason is that
the expression on the right appears to be the ratio of two integers, so Java does
integer division, which yields the integer value 0. Converted to floating-point,
the result is 0.0.

One way to solve this problem (once you figure out what it is) is to make the
right-hand side a floating-point expression:

double y = 1.0 / 3.0;

This sets y to 0.333333, as expected.

All the operations we have seen so far—addition, subtraction, multiplication,
and division—also work on floating-point values, although you might be inter-
ested to know that the underlying mechanism is completely different. In fact,
most processors have special hardware just for performing floating-point oper-
ations.

3.2 Converting from double to int

As I mentioned, Java converts ints to doubles automatically if necessary, be-
cause no information is lost in the translation. On the other hand, going from
a double to an int requires rounding off. Java doesn’t perform this operation
automatically, in order to make sure that you, as the programmer, are aware of
the loss of the fractional part of the number.

The simplest way to convert a floating-point value to an integer is to use a
typecast. Typecasting is so called because it allows you to take a value that
belongs to one type and “cast” it into another type (in the sense of molding or
reforming, not throwing).

Unfortunately, the syntax for typecasting is ugly: you put the name of the type
in parentheses and use it as an operator. For example,

int x = (int) Math.PI;

The (int) operator has the effect of converting what follows into an integer, so
x gets the value 3.

Typecasting takes precedence over arithmetic operations, so in the following
example, the value of PI gets converted to an integer first, and the result is 60,
not 62.

3.3 Math methods 21

int x = (int) Math.PI * 20.0;

Converting to an integer always rounds down, even if the fraction part is
0.99999999.

These two properties (precedence and rounding) can make typecasting awkward.

3.3 Math methods

In mathematics, you have probably seen functions like sin and log, and you have
learned to evaluate expressions like sin(π/2) and log(1/x). First, you evaluate
the expression in parentheses, which is called the argument of the function.
For example, π/2 is approximately 1.571, and 1/x is 0.1 (assuming that x is
10).

Then you can evaluate the function itself, either by looking it up in a table or
by performing various computations. The sin of 1.571 is 1, and the log of 0.1 is
-1 (assuming that log indicates the logarithm base 10).

This process can be applied repeatedly to evaluate more complicated expressions
like log(1/ sin(π/2)). First we evaluate the argument of the innermost function,
then evaluate the function, and so on.

Java provides a set of built-in functions that includes most of the mathematical
operations you can think of. These functions are called methods. Most math
methods operate on doubles.

The math methods are invoked using a syntax that is similar to the print

commands we have already seen:

double root = Math.sqrt (17.0);

double angle = 1.5;

double height = Math.sin (angle);

The first example sets root to the square root of 17. The second example finds
the sine of 1.5, which is the value of the variable angle. Java assumes that
the values you use with sin and the other trigonometric functions (cos, tan)
are in radians. To convert from degrees to radians, you can divide by 360 and
multiply by 2π. Conveniently, Java provides π as a built-in value:

double degrees = 90;

double angle = degrees * 2 * Math.PI / 360.0;

Notice that PI is in all capital letters. Java does not recognize Pi, pi, or pie.

Another useful method in the Math class is round, which rounds a floating-point
value off to the nearest integer and returns an int.

int x = Math.round (Math.PI * 20.0);

In this case the multiplication happens first, before the method is invoked. The
result is 63 (rounded up from 62.8319).

22 Methods

3.4 Composition

Just as with mathematical functions, Java methods can be composed, meaning
that you use one expression as part of another. For example, you can use any
expression as an argument to a method:

double x = Math.cos (angle + Math.PI/2);

This statement takes the value Math.PI, divides it by two and adds the result
to the value of the variable angle. The sum is then passed as an argument to
the cos method. (Notice that PI is the name of a variable, not a method, so
there are no arguments, not even the empty argument ()).

You can also take the result of one method and pass it as an argument to
another:

double x = Math.exp (Math.log (10.0));

In Java, the log function always uses base e, so this statement finds the log
base e of 10 and then raises e to that power. The result gets assigned to x; I
hope you know what it is.

3.5 Adding new methods

So far we have only been using the methods that are built into Java, but it is
also possible to add new methods. Actually, we have already seen one method
definition: main. The method named main is special in that it indicates where
the execution of the program begins, but the syntax for main is the same as for
other method definitions:

public static void NAME (LIST OF PARAMETERS) {

STATEMENTS

}

You can make up any name you want for your method, except that you can’t
call it main or any other Java keyword. The list of parameters specifies what
information, if any, you have to provide in order to use (or invoke) the new
function.

The single parameter for main is String[] args, which indicates that whoever
invokes main has to provide an array of Strings (we’ll get to arrays in Chap-
ter 10). The first couple of methods we are going to write have no parameters,
so the syntax looks like this:

public static void newLine () {

System.out.println ("");

}

This method is named newLine, and the empty parentheses indicate that it
takes no parameters. It contains only a single statement, which prints an empty
String, indicated by "". Printing a String with no letters in it may not seem
all that useful, except remember that println skips to the next line after it
prints, so this statement has the effect of skipping to the next line.

3.5 Adding new methods 23

In main we can invoke this new method using syntax that is similar to the way
we invoke the built-in Java commands:

public static void main (String[] args) {

System.out.println ("First line.");

newLine ();

System.out.println ("Second line.");

}

The output of this program is

First line.

Second line.

Notice the extra space between the two lines. What if we wanted more space
between the lines? We could invoke the same method repeatedly:

public static void main (String[] args) {

System.out.println ("First line.");

newLine ();

newLine ();

newLine ();

System.out.println ("Second line.");

}

Or we could write a new method, named threeLine, that prints three new lines:

public static void threeLine () {

newLine (); newLine (); newLine ();

}

public static void main (String[] args) {

System.out.println ("First line.");

threeLine ();

System.out.println ("Second line.");

}

You should notice a few things about this program:

• You can invoke the same procedure repeatedly. In fact, it is quite common
and useful to do so.

• You can have one method invoke another method. In this case, main in-
vokes threeLine and threeLine invokes newLine. Again, this is common
and useful.

• In threeLine I wrote three statements all on the same line, which is syn-
tactically legal (remember that spaces and new lines usually don’t change
the meaning of a program). On the other hand, it is usually a better idea
to put each statement on a line by itself, to make your program easy to
read. I sometimes break that rule in this book to save space.

24 Methods

So far, it may not be clear why it is worth the trouble to create all these new
methods. Actually, there are a lot of reasons, but this example only demon-
strates two:

1. Creating a new method gives you an opportunity to give a name to a
group of statements. Methods can simplify a program by hiding a complex
computation behind a single command, and by using English words in
place of arcane code. Which is clearer, newLine or System.out.println
("")?

2. Creating a new method can make a program smaller by eliminating repet-
itive code. For example, how would you print nine consecutive new lines?
You could just invoke threeLine three times.

3.6 Classes and methods

Pulling together all the code fragments from the previous section, the whole
class definition looks like this:

class NewLine {

public static void newLine () {

System.out.println ("");

}

public static void threeLine () {

newLine (); newLine (); newLine ();

}

public static void main (String[] args) {

System.out.println ("First line.");

threeLine ();

System.out.println ("Second line.");

}

}

The first line indicates that this is the class definition for a new class called
NewLine. A class is a collection of related methods. In this case, the class named
NewLine contains three methods, named newLine, threeLine, and main.

The other class we’ve seen is the Math class. It contains methods named sqrt,
sin, and many others. When we invoke a mathematical function, we have to
specify the name of the class (Math) and the name of the function. That’s why
the syntax is slightly different for built-in methods and the methods that we
write:

Math.pow (2.0, 10.0);

newLine ();

3.7 Programs with multiple methods 25

The first statement invokes the pow method in the Math class (which raises
the first argument to the power of the second argument). The second statement
invokes the newLine method, which Java assumes (correctly) is in the NewLine

class, which is what we are writing.

If you try to invoke a method from the wrong class, the compiler will generate
an error. For example, if you type:

pow (2.0, 10.0);

The compiler will say something like, “Can’t find a method named pow in class
NewLine.” If you have seen this message, you might have wondered why it was
looking for pow in your class definition. Now you know.

3.7 Programs with multiple methods

When you look at a class definition that contains several methods, it is tempting
to read it from top to bottom, but that is likely to be confusing, because that
is not the order of execution of the program.

Execution always begins at the first statement of main, regardless of where it is
in the program (in this case I deliberately put it at the bottom). Statements are
executed one at a time, in order, until you reach a method invocation. Method
invocations are like a detour in the flow of execution. Instead of going to the
next statement, you go to the first line of the invoked method, execute all the
statements there, and then come back and pick up again where you left off.

That sounds simple enough, except that you have to remember that one method
can invoke another. Thus, while we are in the middle of main, we might have
to go off and execute the statements in threeLine. But while we are executing
threeLine, we get interrupted three times to go off and execute newLine.

For its part, newLine invokes the built-in method println, which causes yet
another detour. Fortunately, Java is quite adept at keeping track of where it is,
so when println completes, it picks up where it left off in newLine, and then
gets back to threeLine, and then finally gets back to main so the program can
terminate.

Actually, technically, the program does not terminate at the end of main. In-
stead, execution picks up where it left off in the program that invoked main,
which is the Java interpreter. The Java interpreter takes care of things like
deleting windows and general cleanup, and then the program terminates.

What’s the moral of this sordid tale? When you read a program, don’t read
from top to bottom. Instead, follow the flow of execution.

3.8 Parameters and arguments

Some of the built-in methods we have used have parameters, which are values
that you provide to let the method do its job. For example, if you want to

26 Methods

find the sine of a number, you have to indicate what the number is. Thus, sin
takes a double value as a parameter. To print a string, you have to provide the
string, which is why println takes a String as a parameter.

Some methods take more than one parameter, like pow, which takes two
doubles, the base and the exponent.

Notice that in each of these cases we have to specify not only how many param-
eters there are, but also what type they are. So it shouldn’t surprise you that
when you write a class definition, the parameter list indicates the type of each
parameter. For example:

public static void printTwice (String phil) {

System.out.println (phil);

System.out.println (phil);

}

This method takes a single parameter, named phil, that has type String.
Whatever that parameter is (and at this point we have no idea what it is), it
gets printed twice. I chose the name phil to suggest that the name you give
a parameter is up to you, but in general you want to choose something more
illustrative than phil.

In order to invoke this method, we have to provide a String. For example, we
might have a main method like this:

public static void main (String[] args) {

printTwice ("Don’t make me say this twice!");

}

The string you provide is called an argument, and we say that the argument is
passed to the method. In this case we are creating a string value that contains
the text “Don’t make me say this twice!” and passing that string as an argument
to printTwice where, contrary to its wishes, it will get printed twice.

Alternatively, if we had a String variable, we could use it as an argument
instead:

public static void main (String[] args) {

String argument = "Never say never.";

printTwice (argument);

}

Notice something very important here: the name of the variable we pass as an
argument (argument) has nothing to do with the name of the parameter (phil).
Let me say that again:

The name of the variable we pass as an argument has noth-
ing to do with the name of the parameter.

They can be the same or they can be different, but it is important to realize
that they are not the same thing, except that they happen to have the same
value (in this case the string "Never say never.").

3.9 Stack diagrams 27

The value you provide as an argument must have the same type as the param-
eter of the method you invoke. This rule is very important, but it often gets
complicated in Java for two reasons:

• There are some methods that can accept arguments with many different
types. For example, you can send any type to print and println, and it
will do the right thing no matter what. This sort of thing is an exception,
though.

• If you violate this rule, the compiler often generates a confusing error
message. Instead of saying something like, “You are passing the wrong
kind of argument to this method,” it will probably say something to the
effect that it could not find a method with that name that would accept
an argument with that type. Once you have seen this error message a few
times, though, you will figure out how to interpret it.

3.9 Stack diagrams

Parameters and other variables only exist inside their own methods. Within
the confines of main, there is no such thing as phil. If you try to use it, the
compiler will complain. Similarly, inside printTwice there is no such thing as
argument.

One way to keep track of where each variable is defined is with a stack diagram.
The stack diagram for the previous example looks like this:

argumentmain

philprintTwice

"Never say never."

"Never say never."

For each method there is a gray box called a frame that contains the methods
parameters and local variables. The name of the method appears outside the
frame. As usual, the value of each variable is drawn inside a box with the name
of the variable beside it.

3.10 Methods with multiple parameters

The syntax for declaring and invoking methods with multiple parameters is a
common source of errors. First, remember that you have to declare the type of
every parameter. For example

28 Methods

public static void printTime (int hour, int minute) {

System.out.print (hour);

System.out.print (":");

System.out.println (minute);

}

It might be tempting to write int hour, minute, but that format is only legal
for variable declarations, not for parameters.

Another common source of confusion is that you do not have to declare the
types of arguments. The following is wrong!

int hour = 11;

int minute = 59;

printTime (int hour, int minute); // WRONG!

In this case, Java can tell the type of hour and minute by looking at their
declarations. It is unnecessary and illegal to include the type when you pass
them as arguments. The correct syntax is printTime (hour, minute).

As an exercise, draw a stack frame for printTime called with the arguments 11
and 59.

3.11 Methods with results

You might have noticed by now that some of the methods we are using, like
the Math methods, yield results. Other methods, like println and newLine,
perform some action but they don’t return a value. That raises some questions:

• What happens if you invoke a method and you don’t do anything with
the result (i.e. you don’t assign it to a variable or use it as part of a larger
expression)?

• What happens if you use a print method as part of an expression, like
System.out.println ("boo!") + 7?

• Can we write methods that yield results, or are we stuck with things like
newLine and printTwice?

The answer to the third question is “yes, you can write methods that return
values,” and we’ll do it in a couple of chapters. I will leave it up to you to
answer the other two questions by trying them out. In fact, any time you have
a question about what is legal or illegal in Java, a good way to find out is to
ask the compiler.

3.12 Glossary

floating-point: A type of variable (or value) that can contain fractions as well
as integers. In Java this type is called double.

3.12 Glossary 29

class: A named collection of methods. So far, we have used the Math class and
the System class, and we have written classes named Hello and NewLine.

method: A named sequence of statements that performs some useful function.
Methods may or may not take parameters, and may or may not produce
a result.

parameter: A piece of information you provide in order to invoke a method.
Parameters are like variables in the sense that they contain values and
have types.

argument: A value that you provide when you invoke a method. This value
must have the same type as the corresponding parameter.

invoke: Cause a method to be executed.

Chapter 4

Conditionals, graphics and

recursion

4.1 The modulus operator

The modulus operator works on integers (and integer expressions) and yields
the remainder when the first operand is divided by the second. In Java, the
modulus operator is a percent sign, %. The syntax is exactly the same as for
other operators:

int quotient = 7 / 3;

int remainder = 7 % 3;

The first operator, integer division, yields 2. The second operator yields 1.
Thus, 7 divided by 3 is 2 with 1 left over.

The modulus operator turns out to be surprisingly useful. For example, you
can check whether one number is divisible by another: if x % y is zero, then x

is divisible by y.

Also, you can use the modulus operator to extract the rightmost digit or digits
from a number. For example, x % 10 yields the rightmost digit of x (in base
10). Similarly x % 100 yields the last two digits.

4.2 Conditional execution

In order to write useful programs, we almost always need the ability to check
certain conditions and change the behavior of the program accordingly. Condi-
tional statements give us this ability. The simplest form is the if statement:

if (x > 0) {

System.out.println ("x is positive");

}

32 Conditionals, graphics and recursion

The expression in parentheses is called the condition. If it is true, then the
statements in brackets get executed. If the condition is not true, nothing hap-
pens.

The condition can contain any of the comparison operators, sometimes called
relational operators:

x == y // x equals y

x != y // x is not equal to y

x > y // x is greater than y

x < y // x is less than y

x >= y // x is greater than or equal to y

x <= y // x is less than or equal to y

Although these operations are probably familiar to you, the syntax Java uses is
a little different from mathematical symbols like =, 6= and ≤. A common error
is to use a single = instead of a double ==. Remember that = is the assignment
operator, and == is a comparison operator. Also, there is no such thing as =<

or =>.

The two sides of a condition operator have to be the same type. You can only
compare ints to ints and doubles to doubles. Unfortunately, at this point
you can’t compare Strings at all! There is a way to compare Strings, but we
won’t get to it for a couple of chapters.

4.3 Alternative execution

A second form of conditional execution is alternative execution, in which there
are two possibilities, and the condition determines which one gets executed. The
syntax looks like:

if (x%2 == 0) {

System.out.println ("x is even");

} else {

System.out.println ("x is odd");

}

If the remainder when x is divided by 2 is zero, then we know that x is even, and
this code prints a message to that effect. If the condition is false, the second
print statement is executed. Since the condition must be true or false, exactly
one of the alternatives will be executed.

As an aside, if you think you might want to check the parity (evenness or
oddness) of numbers often, you might want to “wrap” this code up in a method,
as follows:

public static void printParity (int x) {

if (x%2 == 0) {

System.out.println ("x is even");

} else {

System.out.println ("x is odd");

4.4 Chained conditionals 33

}

}

Now you have a method named printParity that will print an appropriate
message for any integer you care to provide. In main you would invoke this
method as follows:

printParity (17);

Always remember that when you invoke a method, you do not have to declare
the types of the arguments you provide. Java can figure out what type they
are. You should resist the temptation to write things like:

int number = 17;

printParity (int number); // WRONG!!!

4.4 Chained conditionals

Sometimes you want to check for a number of related conditions and choose one
of several actions. One way to do this is by chaining a series of ifs and elses:

if (x > 0) {

System.out.println ("x is positive");

} else if (x < 0) {

System.out.println ("x is negative");

} else {

System.out.println ("x is zero");

}

These chains can be as long as you want, although they can be difficult to read
if they get out of hand. One way to make them easier to read is to use standard
indentation, as demonstrated in these examples. If you keep all the statements
and squiggly-brackets lined up, you are less likely to make syntax errors and
you can find them more quickly if you do.

4.5 Nested conditionals

In addition to chaining, you can also nest one conditional within another. We
could have written the previous example as:

if (x == 0) {

System.out.println ("x is zero");

} else {

if (x > 0) {

System.out.println ("x is positive");

} else {

System.out.println ("x is negative");

}

}

34 Conditionals, graphics and recursion

There is now an outer conditional that contains two branches. The first branch
contains a simple print statement, but the second branch contains another
conditional statement, which has two branches of its own. Fortunately, those two
branches are both print statements, although they could have been conditional
statements as well.

Notice again that indentation helps make the structure apparent, but neverthe-
less, nested conditionals get difficult to read very quickly. In general, it is a
good idea to avoid them when you can.

On the other hand, this kind of nested structure is common, and we will see
it again, so you better get used to it.

4.6 The return statement

The return statement allows you to terminate the execution of a method before
you reach the end. One reason to use it is if you detect an error condition:

public static void printLogarithm (double x) {

if (x <= 0.0) {

System.out.println ("Positive numbers only, please.");

return;

}

double result = Math.log (x);

System.out.println ("The log of x is " + result);

}

This defines a method named printLogarithm that takes a double named x

as a parameter. The first thing it does is check whether x is less than or equal
to zero, in which case it prints an error message and then uses return to exit
the method. The flow of execution immediately returns to the caller and the
remaining lines of the method are not executed.

I used a floating-point value on the right side of the condition because there is
a floating-point variable on the left.

4.7 Type conversion

You might wonder how you can get away with an expression like "The log of

x is " + result, since one of the operands is a String and the other is a
double. Well, in this case Java is being smart on our behalf, by automatically
converting the double to a String before it does the string concatenation.

This kind of feature is an example of a common problem in designing a program-
ming language, which is that there is a conflict between formalism, which is the
requirement that formal languages should have simple rules with few exceptions,

4.8 Slates and Graphics objects 35

and convenience, which is the requirement that programming languages be easy
to use in practice.

More often than not, convenience wins, which is usually good for expert pro-
grammers (who are spared from rigorous but unwieldy formalism), but bad for
beginning programmers, who are often baffled by the complexity of the rules
and the number of exceptions. In this book I have tried to simplify things by
emphasizing the rules and omitting many of the exceptions.

Nevertheless, it is handy to know that whenever you try to “add” two expres-
sions, if one of them is a String, then Java will convert the other to a String

and then perform string concatenation. What do you think happens if you
perform an operation between an integer and a floating-point value?

4.8 Slates and Graphics objects

In order to draw things on the screen, you need two objects, a Slate and a
Graphics object.

Slate: a Slate is a window that contains a blank rectangle you can draw on.
The Slate class is not part of the standard Java library; it is something
I wrote for this course.

Graphics: the Graphics object is the object we will use to draw lines, circles,
etc. It is part of the Java library, so the documentation for it is on the
Sun web site.

The methods that pertain to Graphics objects are defined in the built-in
Graphics class. The methods that pertain to Slates are defined in the Slate

class, which is shown in Appendix D.

The primary method in the Slate class is makeSlate, which does pretty much
what you would expect. It creates a new window and returns a Slate object
you can use to refer to the window later in the program. You can create more
than one Slate in a single program.

Slate slate = Slate.makeSlate (500, 500);

makeSlate takes two arguments, the width and height of the window. Because
it belongs to a different class, we have to specify the name of the class using
“dot notation.”

The return value gets assigned to a variable named slate. There is no conflict
between the name of the class (with an upper-case “S”) and the name of the
variable (with a lower-case “s”).

The next method we need is getGraphics, which takes a Slate object and
creates a Graphics object that can draw on it. You can think of a Graphics

object as a piece of chalk.

Graphics g = Slate.getGraphics (slate);

Using the name g is conventional, but we could have called it anything.

36 Conditionals, graphics and recursion

4.9 Invoking methods on a Graphics object

In order to draw things on the screen, you invoke methods on the graphics
object. We have invoked lots of methods already, but this is the first time we
have “invoked a method on an object.” The syntax is similar to invoking a
method from another class:

g.setColor (Color.black);

g.drawOval (x, y, width, height);

The name of the object comes before the dot; the name of the method comes
after, followed by the arguments for that method. In this case, the method takes
a single argument, which is a color.

setColor changes the current color, in this case to black. Everything that gets
drawn will be black, until we use setColor again.

Color.black is a special value provided by the Color class, just as Math.PI is
a special value provided by the Math class. Color, you will be happy to hear,
provides a palette of other colors, including:

black blue cyan darkGray gray lightGray

magenta orange pink red white yellow

To draw on the Slate, we can invoke draw methods on the Graphics object.
For example:

g.drawOval (x, y, width, height);

drawOval takes four integers as arguments. These arguments specify a bound-
ing box, which is the rectangle in which the oval will be drawn (as shown in
the figure). The bounding box itself is not drawn; only the oval is. The bound-
ing box is like a guideline. Bounding boxes are always oriented horizontally or
vertically; they are never at a funny angle.

bounding box

inscribed oval

If you think about it, there are lots of ways to specify the location and size of
a rectangle. You could give the location of the center or any of the corners,
along with the height and width. Or, you could give the location of opposing
corners. The choice is arbitrary, but in any case it will require the same number
of parameters: four.

By convention, the usual way to specify a bounding box is to give the location
of the upper-left corner and the width and height. The usual way to specify a
location is to use a coordinate system.

4.10 Coordinates 37

4.10 Coordinates

You are probably familiar with Cartesian coordinates in two dimensions, in
which each location is identified by an x-coordinate (distance along the x-axis)
and a y-coordinate. By convention, Cartesian coordinates increase to the right
and up, as shown in the figure.

positive y

negative y

Cartesian coordinates

positive x

origin (0, 0)

negative x

Java graphical coordinates

positive y

positive x

origin (0, 0)

Annoyingly, it is conventional for computer graphics systems to use a variation
on Cartesian coordinates in which the origin is in the upper-left corner of the
screen or window, and the direction of the positive y-axis is down. Java follows
this convention.

The unit of measure is called a pixel; a typical screen is about 1000 pixels wide.
Coordinates are always integers. If you want to use a floating-point value as a
coordinate, you have to round it off to an integer (See Section 3.2).

4.11 A lame Mickey Mouse

Let’s say we want to draw a picture of Mickey Mouse. We can use the oval we
just drew as the face, and then add ears. Before we do that it is a good idea
to break the program up into two methods. main will create the Slate and
Graphics objects and then invoke draw, which does the actual drawing.

public static void main (String[] args) {

int width = 500;

int height = 500;

Slate slate = Slate.makeSlate (width, height);

Graphics g = Slate.getGraphics (slate);

g.setColor (Color.black);

draw (g, 0, 0, width, height);

}

38 Conditionals, graphics and recursion

public static void draw

(Graphics g, int x, int y, int width, int height) {

g.drawOval (x, y, width, height);

g.drawOval (x, y, width/2, height/2);

g.drawOval (x+width/2, y, width/2, height/2);

}

The parameters for draw are the Graphics object and a bounding box. draw

invokes drawOval three times, to draw Mickey’s face and two ears. The following
figure shows the bounding boxes for the ears.

bounding box of left ear bounding box of right ear result

width/2 width/2

height/2height/2

(x, y) (x+width/2, y)

As shown in the figure, the coordinates of the upper-left corner of the bound-
ing box for the left ear are (x, y). The coordinates for the right ear are
(x+width/2, y). In both cases, the width and height of the ears are half the
width and height of the original bounding box.

Notice that the coordinates of the ear boxes are all relative to the location (x
and y) and size (width and height) of the original bounding box. As a result,
we can use draw to draw a Mickey Mouse (albeit a lame one) anywhere on the
screen in any size. As an exercise, modify the arguments passed to draw so that
Mickey is one half the height and width of the screen, and centered.

4.12 Other drawing commands

Another drawing command with the same parameters as drawOval is

drawRect (int x, int y, int width, int height)

Here I am using a standard format for documenting the name and parameters
of methods. This information is sometimes called the method’s interface or
prototype. Looking at this prototype, you can tell what types the parameters
are and (based on their names) infer what they do. Here’s another example:

drawLine (int x1, int y1, int x2, int y2)

4.13 Recursion 39

The use of parameter names x1, x2, y1 and y2 suggests that drawLine draws a
line from the point (x1, y1) to the point (x2, y2).

One other command you might want to try is

drawRoundRect (int x, int y, int width, int height,

int arcWidth, int arcHeight)

The first four parameters specify the bounding box of the rectangle; the remain-
ing two parameters indicate how rounded the corners should be, specifying the
horizontal and vertical diameter of the arcs at the corners.

There are also “fill” versions of these commands, that not only draw the outline
of a shape, but also fill it in. The interfaces are identical; only the names have
been changed:

fillOval (int x, int y, int width, int height)

fillRect (int x, int y, int width, int height)

fillRoundRect (int x, int y, int width, int height,

int arcWidth, int arcHeight)

There is no such thing as fillLine—it just doesn’t make sense.

4.13 Recursion

I mentioned in the last chapter that it is legal for one method to call another,
and we have seen several examples of that. I neglected to mention that it is also
legal for a method to invoke itself. It may not be obvious why that is a good
thing, but it turns out to be one of the most magical and interesting things a
program can do.

For example, look at the following method:

public static void countdown (int n) {

if (n == 0) {

System.out.println ("Blastoff!");

} else {

System.out.println (n);

countdown (n-1);

}

}

The name of the method is countdown and it takes a single integer as a param-
eter. If the parameter is zero, it prints the word “Blastoff.” Otherwise, it prints
the number and then invokes a method named countdown—itself—passing n-1

as an argument.

What happens if we invoke this method, in main, like this:

countdown (3);

The execution of countdown begins with n=3, and since n is not zero, it prints
the value 3, and then invokes itself...

40 Conditionals, graphics and recursion

The execution of countdown begins with n=2, and since n is not zero,
it prints the value 2, and then invokes itself...

The execution of countdown begins with n=1, and since n

is not zero, it prints the value 1, and then invokes itself...

The execution of countdown begins with n=0, and
since n is zero, it prints the word “Blastoff!” and
then returns.

The countdown that got n=1 returns.

The countdown that got n=2 returns.

The countdown that got n=3 returns.

And then you’re back in main (what a trip). So the total output looks like:

3

2

1

Blastoff!

As a second example, let’s look again at the methods newLine and threeLine.

public static void newLine () {

System.out.println ("");

}

public static void threeLine () {

newLine (); newLine (); newLine ();

}

Although these work, they would not be much help if I wanted to print 2 new-
lines, or 106. A better alternative would be

public static void nLines (int n) {

if (n > 0) {

System.out.println ("");

nLines (n-1);

}

}

This program is very similar; as long as n is greater than zero, it prints one
newline, and then invokes itself to print n-1 additional newlines. Thus, the
total number of newlines that get printed is 1 + (n-1), which usually comes
out to roughly n.

The process of a method invoking itself is called recursion, and such methods
are said to be recursive.

4.14 Stack diagrams for recursive methods

In the previous chapter we used a stack diagram to represent the state of a
program during a method call. The same kind of diagram can make it easier to
interpret a recursive method.

4.15 Convention and divine law 41

Remember that every time a method gets called it creates a new instance of
the method that contains a new version of the method’s local variables and
parameters.

The following figure is a stack diagram for countdown, called with n = 3:

countdown

countdown

main

countdown

countdown

3

2

1

0

n

n

n

n

There is one instance of main and four instances of countdown, each with a
different value for the parameter n. The bottom of the stack, countdown with
n=0 is the base case. It does not make a recursive call, so there are no more
instances of countdown.

The instance of main is empty because main does not have any parameters or
local variables. As an exercise, draw a stack diagram for nLines, invoked with
the parameter n=4.

4.15 Convention and divine law

In the last few sections, I used the phrase “by convention” several times to indi-
cate design decisions that are arbitrary in the sense that there are no significant
reasons to do things one way or another, but dictated by convention.

In these cases, it is to your advantage to be familiar with convention and use it,
since it will make your programs easier for others to understand. At the same
time, it is important to distinguish between (at least) three kinds of rules:

Divine law: This is my phrase to indicate a rule that is true because of some
underlying principle of logic or mathematics, and that is true in any pro-
gramming language (or other formal system). For example, there is no
way to specify the location and size of a bounding box using fewer than
four pieces of information. Another example is that adding integers is
commutative. That’s part of the definition of addition and has nothing to
do with Java.

Rules of Java: These are the syntactic and semantic rules of Java that you
cannot violate, because the resulting program will not compile or run.

42 Conditionals, graphics and recursion

Some are arbitrary; for example, the fact that the + symbol represents
addition and string concatenation. Others reflect underlying limitations
of the compilation or execution process. For example, you have to specify
the types of parameters, but not arguments.

Style and convention: There are a lot of rules that are not enforced by the
compiler, but that are essential for writing programs that are correct, that
you can debug and modify, and that others can read. Examples include
indentation and the placement of squiggly braces, as well as conventions
for naming variables, methods and classes.

As we go along, I will try to indicate which category various things fall into,
but you might want to give it some thought from time to time.

While I am on the topic, you have probably figured out by now that the names
of classes always begin with a capital letter, but variables and methods begin
with lower case. If a name includes more than one word, you usually capitalize
the first letter of each word, as in newLine and printParity. Which category
are these rules in?

4.16 Glossary

modulus: An operator that works on integers and yields the remainder when
one number is divided by another. In Java it is denoted with a percent
sign (%).

conditional: A block of statements that may or may not be executed depend-
ing on some condition.

chaining: A way of joining several conditional statements in sequence.

nesting: Putting a conditional statement inside one or both branches of an-
other conditional statement.

coordinate: A variable or value that specifies a location in a two-dimensional
graphical window.

pixel: The unit in which coordinates are measured.

bounding box: A common way to specify the coordinates of a rectangular
area.

typecast: An operator that converts from one type to another. In Java it
appears as a type name in parentheses, like (int).

interface: A description of the parameters required by a method and their
types.

prototype: A way of describing the interface to a method using Java-like syn-
tax.

4.16 Glossary 43

recursion: The process of invoking the same method you are currently execut-
ing.

infinite recursion: A method that invokes itself recursively without ever
reaching the base case. The usual result is a StackOverflowException.

fractal: A kind of image that is defined recursively, so that each part of the
image is a smaller version of the whole.

Chapter 5

Fruitful methods

5.1 Return values

Some of the built-in methods we have used, like the Math functions, have pro-
duced results. That is, the effect of invoking the method is to generate a new
value, which we usually assign to a variable or use as part of an expression. For
example:

double e = Math.exp (1.0);

double height = radius * Math.sin (angle);

But so far all the methods we have written have been void methods; that is,
methods that return no value. When you invoke a void method, it is typically
on a line by itself, with no assignment:

nLines (3);

g.drawOval (0, 0, width, height);

In this chapter, we are going to write methods that return things, which I will
refer to as fruitful methods, for want of a better name. The first example is
area, which takes a double as a parameter, and returns the area of a circle with
the given radius:

public static double area (double radius) {

double area = Math.PI * radius * radius;

return area;

}

The first thing you should notice is that the beginning of the method definition
is different. Instead of public static void, which indicates a void method,
we see public static double, which indicates that the return value from this
method will have type double. I still haven’t explained what public static

means, but be patient.

Also, notice that the last line is an alternate form of the return statement that
includes a return value. This statement means, “return immediately from this

46 Fruitful methods

method and use the following expression as a return value.” The expression you
provide can be arbitrarily complicated, so we could have written this method
more concisely:

public static double area (double radius) {

return Math.PI * radius * radius;

}

On the other hand, temporary variables like area often make debugging easier.
In either case, the type of the expression in the return statement must match
the return type of the method. In other words, when you declare that the return
type is double, you are making a promise that this method will eventually
produce a double. If you try to return with no expression, or an expression
with the wrong type, the compiler will take you to task.

Sometimes it is useful to have multiple return statements, one in each branch
of a conditional:

public static double absoluteValue (double x) {

if (x < 0) {

return -x;

} else {

return x;

}

}

Since these return statements are in an alternative conditional, only one will
be executed. Although it is legal to have more than one return statement in a
method, you should keep in mind that as soon as one is executed, the method
terminates without executing any subsequent statements.

Code that appears after a return statement, or any place else where it can
never be executed, is called dead code. Some compilers warn you if part of
your code is dead.

If you put return statements inside a conditional, then you have to guarantee
that every possible path through the program hits a return statement. For
example:

public static double absoluteValue (double x) {

if (x < 0) {

return -x;

} else if (x > 0) {

return x;

} // WRONG!!

}

This program is not legal because if x happens to be 0, then neither condition will
be true and the method will end without hitting a return statement. A typical
compiler message would be “return statement required in absoluteValue,” which
is a confusing message considering that there are already two of them.

5.2 Program development 47

5.2 Program development

At this point you should be able to look at complete Java methods and tell what
they do. But it may not be clear yet how to go about writing them. I am going
to suggest one technique that I call incremental development.

As an example, imagine you want to find the distance between two points, given
by the coordinates (x1, y1) and (x2, y2). By the usual definition,

distance =
√

(x2 − x1)2 + (y2 − y1)2 (5.1)

The first step is to consider what a distance method should look like in Java.
In other words, what are the inputs (parameters) and what is the output (return
value).

In this case, the two points are the parameters, and it is natural to represent
them using four doubles, although we will see later that there is a Point object
in Java that we could use. The return value is the distance, which will have
type double.

Already we can write an outline of the method:

public static double distance

(double x1, double y1, double x2, double y2) {

return 0.0;

}

The statement return 0.0; is a place-keeper that is necessary in order to
compile the program. Obviously, at this stage the program doesn’t do anything
useful, but it is worthwhile to try compiling it so we can identify any syntax
errors before we make it more complicated.

In order to test the new method, we have to invoke it with sample values.
Somewhere in main I would add:

double dist = distance (1.0, 2.0, 4.0, 6.0);

I chose these values so that the horizontal distance is 3 and the vertical distance
is 4; that way, the result will be 5 (the hypotenuse of a 3-4-5 triangle). When
you are testing a method, it is useful to know the right answer.

Once we have checked the syntax of the method definition, we can start adding
lines of code one at a time. After each incremental change, we recompile and
run the program. That way, at any point we know exactly where the error must
be—in the last line we added.

The next step in the computation is to find the differences x2 − x1 and y2 − y1.
I will store those values in temporary variables named dx and dy.

public static double distance

(double x1, double y1, double x2, double y2) {

double dx = x2 - x1;

double dy = y2 - y1;

48 Fruitful methods

System.out.println ("dx is " + dx);

System.out.println ("dy is " + dy);

return 0.0;

}

I added print statements that will let me check the intermediate values before
proceeding. As I mentioned, I already know that they should be 3.0 and 4.0.

When the method is finished I will remove the print statements. Code like that
is called scaffolding, because it is helpful for building the program, but it is
not part of the final product. Sometimes it is a good idea to keep the scaffolding
around, but comment it out, just in case you need it later.

The next step in the development is to square dx and dy. We could use the
Math.pow method, but it is simpler and faster to just multiply each term by
itself.

public static double distance

(double x1, double y1, double x2, double y2) {

double dx = x2 - x1;

double dy = y2 - y1;

double dsquared = dx*dx + dy*dy;

System.out.println ("dsquared is " + dsquared);

return 0.0;

}

Again, I would compile and run the program at this stage and check the inter-
mediate value (which should be 25.0).

Finally, we can use the Math.sqrt method to compute and return the result.

public static double distance

(double x1, double y1, double x2, double y2) {

double dx = x2 - x1;

double dy = y2 - y1;

double dsquared = dx*dx + dy*dy;

double result = Math.sqrt (dsquared);

return result;

}

Then in main, we should print and check the value of the result.

As you gain more experience programming, you might find yourself writing
and debugging more than one line at a time. Nevertheless, this incremental
development process can save you a lot of debugging time.

The key aspects of the process are:

• Start with a working program and make small, incremental changes. At
any point, if there is an error, you will know exactly where it is.

• Use temporary variables to hold intermediate values so you can print and
check them.

5.3 Composition 49

• Once the program is working, you might want to remove some of the
scaffolding or consolidate multiple statements into compound expressions,
but only if it does not make the program difficult to read.

5.3 Composition

As you should expect by now, once you define a new method, you can use it as
part of an expression, and you can build new methods using existing methods.
For example, what if someone gave you two points, the center of the circle and
a point on the perimeter, and asked for the area of the circle?

Let’s say the center point is stored in the variables xc and yc, and the perimeter
point is in xp and yp. The first step is to find the radius of the circle, which is
the distance between the two points. Fortunately, we have a method, distance
that does that.

double radius = distance (xc, yc, xp, yp);

The second step is to find the area of a circle with that radius, and return it.

double area = area (radius);

return area;

Wrapping that all up in a method, we get:

public static double fred

(double xc, double yc, double xp, double yp) {

double radius = distance (xc, yc, xp, yp);

double area = area (radius);

return area;

}

The name of this method is fred, which may seem odd. I will explain why in
the next section.

The temporary variables radius and area are useful for development and de-
bugging, but once the program is working we can make it more concise by
composing the method invocations:

public static double fred

(double xc, double yc, double xp, double yp) {

return area (distance (xc, yc, xp, yp));

}

5.4 Overloading

In the previous section you might have noticed that fred and area perform
similar functions—finding the area of a circle—but take different parameters.
For area, we have to provide the radius; for fred we provide two points.

If two methods do the same thing, it is natural to give them the same name. In
other words, it would make more sense if fred were called area.

50 Fruitful methods

Having more than one method with the same name, which is called overload-
ing, is legal in Java as long as each version takes different parameters. So we
can go ahead and rename fred:

public static double area

(double x1, double y1, double x2, double y2) {

return area (distance (xc, yc, xp, yp));

}

When you invoke an overloaded method, Java knows which version you want
by looking at the arguments that you provide. If you write:

double x = area (3.0);

Java goes looking for a method named area that takes a single double as an
argument, and so it uses the first version, which interprets the argument as a
radius. If you write:

double x = area (1.0, 2.0, 4.0, 6.0);

Java uses the second version of area. More amazing still, the second version of
area actually invokes the first.

Many of the built-in Java commands are overloaded, meaning that there are
different versions that accept different numbers or types of parameters. For
example, there are versions of print and println that accept a single parameter
of any type. In the Math class, there is a version of abs that works on doubles,
and there is also a version for ints.

Although overloading is a useful feature, it should be used with caution. You
might get yourself nicely confused if you are trying to debug one version of a
method while accidently invoking a different one.

Actually, that reminds me of one of the cardinal rules of debugging: make sure
that the version of the program you are looking at is the version of
the program that is running! Some time you may find yourself making one
change after another in your program, and seeing the same thing every time
you run it. This is a warning sign that for one reason or another you are not
running the version of the program you think you are. To check, stick in a print

statement (it doesn’t matter what you print) and make sure the behavior of the
program changes accordingly.

5.5 Boolean expressions

Most of the operations we have seen produce results that are the same type as
their operands. For example, the + operator takes two ints and produces an
int, or two doubles and produces a double, etc.

The exceptions we have seen are the relational operators, which compare
ints and floats and return either true or false. true and false are special
values in Java, and together they make up a type called boolean. You might

5.6 Logical operators 51

recall that when I defined a type, I said it was a set of values. In the case of
ints, doubles and Strings, those sets are pretty big. For booleans, not so big.

Boolean expressions and variables work just like other types of expressions and
variables:

boolean fred;

fred = true;

boolean testResult = false;

The first example is a simple variable declaration; the second example is an
assignment, and the third example is a combination of a declaration and an
assignment, sometimes called an initialization. The values true and false

are keywords in Java, so they may appear in a different color, depending on
your development environment.

As I mentioned, the result of a conditional operator is a boolean, so you can
store the result of a comparison in a variable:

boolean evenFlag = (n%2 == 0); // true if n is even

boolean positiveFlag = (x > 0); // true if x is positive

and then use it as part of a conditional statement later:

if (evenFlag) {

System.out.println ("n was even when I checked it");

}

A variable used in this way is frequently called a flag, since it flags the presence
or absence of some condition.

5.6 Logical operators

There are three logical operators in Java: AND, OR and NOT, which are
denoted by the symbols &&, || and !. The semantics (meaning) of these oper-
ators is similar to their meaning in English. For example x > 0 && x < 10 is
true only if x is greater than zero AND less than 10.

evenFlag || n%3 == 0 is true if either of the conditions is true, that is, if
evenFlag is true OR the number is divisible by 3.

Finally, the NOT operator has the effect of negating or inverting a boolean
expression, so !evenFlag is true if evenFlag is false—if the number is odd.

Logical operators often provide a way to simplify nested conditional statements.
For example, how would you write the following code using a single conditional?

if (x > 0) {

if (x < 10) {

System.out.println ("x is a positive single digit.");

}

}

52 Fruitful methods

5.7 Boolean methods

Methods can return boolean values just like any other type, which is often
convenient for hiding complicated tests inside methods. For example:

public static boolean isSingleDigit (int x) {

if (x >= 0 && x < 10) {

return true;

} else {

return false;

}

}

The name of this method is isSingleDigit. It is common to give boolean
methods names that sound like yes/no questions. The return type is boolean,
which means that every return statement has to provide a boolean expression.

The code itself is straightforward, although it is a bit longer than it needs to
be. Remember that the expression x >= 0 && x < 10 has type boolean, so
there is nothing wrong with returning it directly, and avoiding the if statement
altogether:

public static boolean isSingleDigit (int x) {

return (x >= 0 && x < 10);

}

In main you can invoke this method in the usual ways:

boolean bigFlag = !isSingleDigit (17);

System.out.println (isSingleDigit (2));

The first line assigns the value true to bigFlag only if 17 is not a single-digit
number. The second line prints true because 2 is a single-digit number. Yes,
println is overloaded to handle booleans, too.

The most common use of boolean methods is inside conditional statements

if (isSingleDigit (x)) {

System.out.println ("x is little");

} else {

System.out.println ("x is big");

}

5.8 More recursion

Now that we have methods that return values, you might be interested to know
that we have a complete programming language, by which I mean that any-
thing that can be computed can be expressed in this language. Any program
ever written could be rewritten using only the language features we have used
so far (actually, we would need a few commands to control devices like the
keyboard, mouse, disks, etc., but that’s all).

5.8 More recursion 53

Proving this claim is a non-trivial exercise first accomplished by Alan Turing,
one of the first computer scientists (well, some would argue that he was a math-
ematician, but a lot of the early computer scientists started as mathematicians).
Accordingly, it is known as the Turing thesis. If you take a course on the Theory
of Computation, you will have a chance to see the proof.

To give you an idea of what you can do with the tools we have learned so
far, let’s look at some methods for evaluating recursively-defined mathematical
functions. A recursive definition is similar to a circular definition, in the sense
that the definition contains a reference to the thing being defined. A truly
circular definition is typically not very useful:

frabjuous: an adjective used to describe something that is frabjuous.

If you saw that definition in the dictionary, you might be annoyed. On the other
hand, if you looked up the definition of the mathematical function factorial,
you might get something like:

0! = 1

n! = n · (n − 1)!

(Factorial is usually denoted with the symbol !, which is not to be confused with
the Java logical operator ! which means NOT.) This definition says that the
factorial of 0 is 1, and the factorial of any other value, n, is n multiplied by the
factorial of n − 1. So 3! is 3 times 2!, which is 2 times 1!, which is 1 times 0!.
Putting it all together, we get 3! equal to 3 times 2 times 1 times 1, which is 6.

If you can write a recursive definition of something, you can usually write a Java
program to evaluate it. The first step is to decide what the parameters are for
this function, and what the return type is. With a little thought, you should
conclude that factorial takes an integer as a parameter and returns an integer:

public static int factorial (int n) {

}

If the argument happens to be zero, all we have to do is return 1:

public static int factorial (int n) {

if (n == 0) {

return 1;

}

}

Otherwise, and this is the interesting part, we have to make a recursive call to
find the factorial of n − 1, and then multiply it by n.

public static int factorial (int n) {

if (n == 0) {

return 1;

} else {

54 Fruitful methods

int recurse = factorial (n-1);

int result = n * recurse;

return result;

}

}

If we look at the flow of execution for this program, it is similar to nLines from
the previous chapter. If we invoke factorial with the value 3:

Since 3 is not zero, we take the second branch and calculate the factorial of
n − 1...

Since 2 is not zero, we take the second branch and calculate the
factorial of n − 1...

Since 1 is not zero, we take the second branch and calculate
the factorial of n − 1...

Since 0 is zero, we take the first branch and re-
turn the value 1 immediately without making any
more recursive calls.

The return value (1) gets multiplied by n, which is 1, and
the result is returned.

The return value (1) gets multiplied by n, which is 2, and the result
is returned.

The return value (2) gets multiplied by n, which is 3, and the result, 6, is
returned to main, or whoever invoked factorial (3).

Here is what the stack diagram looks like for this sequence of function calls:

factorial

factorial

factorial

factorial

main

3

2

1

0

2

1

1

6

2

1

n

n

n

n

recurse

recurse

recurse result

result

result

1

1

2

6

The return values are shown being passed back up the stack.

Notice that in the last instance of factorial, the local variables recurse and
result do not exist because when n=0 the branch that creates them does not
execute.

5.9 Leap of faith 55

5.9 Leap of faith

Following the flow of execution is one way to read programs, but as you saw
in the previous section, it can quickly become labarynthine. An alternative is
what I call the “leap of faith.” When you come to a method invocation, instead
of following the flow of execution, you assume that the method works correctly
and returns the appropriate value.

In fact, you are already practicing this leap of faith when you use built-in meth-
ods. When you invoke Math.cos or drawOval, you don’t examine the imple-
mentations of those methods. You just assume that they work, because the
people who wrote the built-in classes were good programmers.

Well, the same is true when you invoke one of your own methods. For exam-
ple, in Section 5.7 we wrote a method called isSingleDigit that determines
whether a number is between 0 and 9. Once we have convinced ourselves that
this method is correct—by testing and examination of the code—we can use the
method without ever looking at the code again.

The same is true of recursive programs. When you get to the recursive invo-
cation, instead of following the flow of execution, you should assume that the
recursive invocation works (yields the correct result), and then ask yourself,
“Assuming that I can find the factorial of n − 1, can I compute the factorial of
n?” In this case, it is clear that you can, by multiplying by n.

Of course, it is a bit strange to assume that the method works correctly when
you have not even finished writing it, but that’s why it’s called a leap of faith!

5.10 One more example

In the previous example I used temporary variables to spell out the steps, and
to make the code easier to debug, but I could have saved a few lines:

public static int factorial (int n) {

if (n == 0) {

return 1;

} else {

return n * factorial (n-1);

}

}

From now on I will tend to use the more concise version, but I recommend that
you use the more explicit version while you are developing code. When you have
it working, you can tighten it up, if you are feeling inspired.

After factorial, the classic example of a recursively-defined mathematical
function is fibonacci, which has the following definition:

fibonacci(0) = 1

56 Fruitful methods

fibonacci(1) = 1

fibonacci(n) = fibonacci(n − 1) + fibonacci(n − 2);

Translated into Java, this is

public static int fibonacci (int n) {

if (n == 0 || n == 1) {

return 1;

} else {

return fibonacci (n-1) + fibonacci (n-2);

}

}

If you try to follow the flow of execution here, even for fairly small values of n,
your head explodes. But according to the leap of faith, if we assume that the
two recursive calls (yes, you can make two recursive calls) work correctly, then
it is clear that we get the right result by adding them together.

5.11 Glossary

return type: The part of a method declaration that indicates what type of
value the method returns.

return value: The value provided as the result of a method invocation.

dead code: Part of a program that can never be executed, often because it
appears after a return statement.

scaffolding: Code that is used during program development but is not part of
the final version.

void: A special return type that indicates a void method; that is, one that does
not return a value.

overloading: Having more than one method with the same name but different
parameters. When you invoke an overloaded method, Java knows which
version to use by looking at the arguments you provide.

boolean: A type of variable that can contain only the two values true and
false.

flag: A variable (usually boolean) that records a condition or status informa-
tion.

conditional operator: An operator that compares two values and produces a
boolean that indicates the relationship between the operands.

logical operator: An operator that combines boolean values and produces
boolean values.

initialization: A statement that declares a new variable and assigns a value
to it at the same time.

Chapter 6

Iteration

6.1 Multiple assignment

I haven’t said much about it, but it is legal in Java to make more than one
assignment to the same variable. The effect of the second assignment is to
replace the old value of the variable with a new value.

int fred = 5;

System.out.print (fred);

fred = 7;

System.out.println (fred);

The output of this program is 57, because the first time we print fred his value
is 5, and the second time his value is 7.

This kind of multiple assignment is the reason I described variables as a
container for values. When you assign a value to a variable, you change the
contents of the container, as shown in the figure:

fred 5

fred 75

int fred = 5;

fred = 7;

When there are multiple assignments to a variable, it is especially important
to distinguish between an assignment statement and a statement of equality.
Because Java uses the = symbol for assignment, it is tempting to interpret a
statement like a = b as a statement of equality. It is not!

First of all, equality is commutative, and assignment is not. For example, in
mathematics if a = 7 then 7 = a. But in Java a = 7; is a legal assignment
statement, and 7 = a; is not.

Furthermore, in mathematics, a statement of equality is true for all time. If
a = b now, then a will always equal b. In Java, an assignment statement can
make two variables equal, but they don’t have to stay that way!

58 Iteration

int a = 5;

int b = a; // a and b are now equal

a = 3; // a and b are no longer equal

The third line changes the value of a but it does not change the value of b,
and so they are no longer equal. In many programming languages an alternate
symbol is used for assignment, such as <- or :=, in order to avoid this confusion.

Although multiple assignment is frequently useful, you should use it with cau-
tion. If the values of variables are changing constantly in different parts of the
program, it can make the code difficult to read and debug.

6.2 Iteration

One of the things computers are often used for is the automation of repetitive
tasks. Repeating identical or similar tasks without making errors is something
that computers do well and people do poorly.

We have already seen programs that use recursion to perform repetition, such
as nLines and countdown. This type of repetition is called iteration, and
Java provides several language features that make it easier to write iterative
programs.

The two features we are going to look at are the while statement and the for

statement.

6.3 The while statement

Using a while statement, we can rewrite countdown:

public static void countdown (int n) {

while (n > 0) {

System.out.println (n);

n = n-1;

}

System.out.println ("Blastoff!");

}

You can almost read a while statement as if it were English. What this means
is, “While n is greater than zero, continue printing the value of n and then
reducing the value of n by 1. When you get to zero, print the word ‘Blastoff!”’

More formally, the flow of execution for a while statement is as follows:

1. Evaluate the condition in parentheses, yielding true or false.

2. If the condition is false, exit the while statement and continue execution
at the next statement.

6.3 The while statement 59

3. If the condition is true, execute each of the statements between the
squiggly-brackets, and then go back to step 1.

This type of flow is called a loop because the third step loops back around to
the top. Notice that if the condition is false the first time through the loop, the
statements inside the loop are never executed. The statements inside the loop
are sometimes called the body of the loop.

The body of the loop should change the value of one or more variables so that,
eventually, the condition becomes false and the loop terminates. Otherwise the
loop will repeat forever, which is called an infinite loop. An endless source
of amusement for computer scientists is the observation that the directions on
shampoo, “Lather, rinse, repeat,” are an infinite loop.

In the case of countdown, we can prove that the loop will terminate because
we know that the value of n is finite, and we can see that the value of n gets
smaller each time through the loop (each iteration), so eventually we have to
get to zero. In other cases it is not so easy to tell:

public static void sequence (int n) {

while (n != 1) {

System.out.println (n);

if (n%2 == 0) { // n is even

n = n / 2;

} else { // n is odd

n = n*3 + 1;

}

}

}

The condition for this loop is n != 1, so the loop will continue until n is 1,
which will make the condition false.

At each iteration, the program prints the value of n and then checks whether it
is even or odd. If it is even, the value of n is divided by two. If it is odd, the
value is replaced by 3n + 1. For example, if the starting value (the argument
passed to sequence) is 3, the resulting sequence is 3, 10, 5, 16, 8, 4, 2, 1.

Since n sometimes increases and sometimes decreases, there is no obvious proof
that n will ever reach 1, or that the program will terminate. For some particular
values of n, we can prove termination. For example, if the starting value is a
power of two, then the value of n will be even every time through the loop, until
we get to 1. The previous example ends with such a sequence, starting with 16.

Particular values aside, the interesting question is whether we can prove that
this program terminates for all values of n. So far, no one has been able to
prove it or disprove it!

60 Iteration

6.4 Tables

One of the things loops are good for is generating and printing tabular data.
For example, before computers were readily available, people had to calculate
logarithms, sines and cosines, and other common mathematical functions by
hand.

To make that easier, there were books containing long tables where you could
find the values of various functions. Creating these tables was slow and boring,
and the result tended to be full of errors.

When computers appeared on the scene, one of the initial reactions was, “This
is great! We can use the computers to generate the tables, so there will be no
errors.” That turned out to be true (mostly), but shortsighted. Soon thereafter
computers (and calculators) were so pervasive that the tables became obsolete.

Well, almost. It turns out that for some operations, computers use tables of
values to get an approximate answer, and then perform computations to improve
the approximation. In some cases, there have been errors in the underlying
tables, most famously in the table the original Intel Pentium used to perform
floating-point division.

Although a “log table” is not as useful as it once was, it still makes a good
example of iteration. The following program prints a sequence of values in the
left column and their logarithms in the right column:

double x = 1.0;

while (x < 10.0) {

System.out.println (x + " " + Math.log(x));

x = x + 1.0;

}

The output of this program is

1.0 0.0

2.0 0.6931471805599453

3.0 1.0986122886681098

4.0 1.3862943611198906

5.0 1.6094379124341003

6.0 1.791759469228055

7.0 1.9459101490553132

8.0 2.0794415416798357

9.0 2.1972245773362196

Looking at these values, can you tell what base the log function uses by default?

Since powers of two are so important in computer science, we often want to find
logarithms with respect to base 2. To find that, we have to use the following
formula:

log2 x = logex/loge2 (6.1)

Changing the print statement to

6.5 Two-dimensional tables 61

System.out.println (x + " " + Math.log(x) / Math.log(2.0));

yields

1.0 0.0

2.0 1.0

3.0 1.5849625007211563

4.0 2.0

5.0 2.321928094887362

6.0 2.584962500721156

7.0 2.807354922057604

8.0 3.0

9.0 3.1699250014423126

We can see that 1, 2, 4 and 8 are powers of two, because their logarithms base
2 are round numbers. If we wanted to find the logarithms of other powers of
two, we could modify the program like this:

double x = 1.0;

while (x < 100.0) {

System.out.println (x + " " + Math.log(x) / Math.log(2.0));

x = x * 2.0;

}

Now instead of adding something to x each time through the loop, which yields
an arithmetic sequence, we multiply x by something, yielding a geometric
sequence. The result is:

1.0 0.0

2.0 1.0

4.0 2.0

8.0 3.0

16.0 4.0

32.0 5.0

64.0 6.0

Log tables may not be useful any more, but for computer scientists, knowing
the powers of two is! Some time when you have an idle moment, you should
memorize the powers of two up to 65536 (that’s 216).

6.5 Two-dimensional tables

A two-dimensional table is a table where you choose a row and a column and
read the value at the intersection. A multiplication table is a good example.
Let’s say you wanted to print a multiplication table for the values from 1 to 6.

A good way to start is to write a simple loop that prints the multiples of 2, all
on one line.

int i = 1;

while (i <= 6) {

System.out.print (2*i + " ");

62 Iteration

i = i + 1;

}

System.out.println ("");

The first line initializes a variable named i, which is going to act as a counter,
or loop variable. As the loop executes, the value of i increases from 1 to 6,
and then when i is 7, the loop terminates. Each time through the loop, we print
the value 2*i followed by three spaces. Since we are using the print command
rather than println, all the output appears on a single line.

As I mentioned in Section 2.4, in some environments the output from print

gets stored without being displayed until println is invoked. If the program
terminates, and you forget to invoke println, you may never see the stored
output.

The output of this program is:

2 4 6 8 10 12

So far, so good. The next step is to encapsulate and generalize.

6.6 Encapsulation and generalization

Encapsulation usually means taking a piece of code and wrapping it up in a
method, allowing you to take advantage of all the things methods are good for.
We have seen two examples of encapsulation, when we wrote printParity in
Section 4.3 and isSingleDigit in Section 5.7.

Generalization means taking something specific, like printing multiples of 2, and
making it more general, like printing the multiples of any integer.

Here’s a method that encapsulates the loop from the previous section and gen-
eralizes it to print multiples of n.

public static void printMultiples (int n) {

int i = 1;

while (i <= 6) {

System.out.print (n*i + " ");

i = i + 1;

}

System.out.println ("");

}

To encapsulate, all I had to do was add the first line, which declares the name,
parameter, and return type. To generalize, all I had to do was replace the value
2 with the parameter n.

If I invoke this method with the argument 2, I get the same output as before.
With argument 3, the output is:

3 6 9 12 15 18

and with argument 4, the output is

6.7 Methods 63

4 8 12 16 20 24

By now you can probably guess how we are going to print a multiplication table:
we’ll invoke printMultiples repeatedly with different arguments. In fact, we
are going to use another loop to iterate through the rows.

int i = 1;

while (i <= 6) {

printMultiples (i);

i = i + 1;

}

First of all, notice how similar this loop is to the one inside printMultiples.
All I did was replace the print statement with a method invocation.

The output of this program is

1 2 3 4 5 6

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24

5 10 15 20 25 30

6 12 18 24 30 36

which is a (slightly sloppy) multiplication table. If the sloppiness bothers you,
Java provides methods that give you more control over the format of the output,
but I’m not going to get into that here.

6.7 Methods

In the last section I mentioned “all the things methods are good for.” About
this time, you might be wondering what exactly those things are. Here are some
of the reasons methods are useful:

• By giving a name to a sequence of statements, you make your program
easier to read and debug.

• Dividing a long program into methods allows you to separate parts of the
program, debug them in isolation, and then compose them into a whole.

• Methods facilitate both recursion and iteration.

• Well-designed methods are often useful for many programs. Once you
write and debug one, you can reuse it.

6.8 More encapsulation

To demonstrate encapsulation again, I’ll take the code from the previous section
and wrap it up in a method:

64 Iteration

public static void printMultTable () {

int i = 1;

while (i <= 6) {

printMultiples (i);

i = i + 1;

}

}

The process I am demonstrating is a common development plan. You develop
code gradually by adding lines to main or someplace else, and then when you
get it working, you extract it and wrap it up in a method.

The reason this is useful is that you sometimes don’t know when you start
writing exactly how to divide the program into methods. This approach lets
you design as you go along.

6.9 Local variables

About this time, you might be wondering how we can use the same variable
i in both printMultiples and printMultTable. Didn’t I say that you can
only declare a variable once? And doesn’t it cause problems when one of the
methods changes the value of the variable?

The answer to both questions is “no,” because the i in printMultiples and
the i in printMultTable are not the same variable. They have the same name,
but they do not refer to the same storage location, and changing the value of
one of them has no effect on the other.

Variables that are declared inside a method definition are called local variables
because they are local to their own methods. You cannot access a local variable
from outside its “home” method, and you are free to have multiple variables
with the same name, as long as they are not in the same method.

It is often a good idea to use different variable names in different methods, to
avoid confusion, but there are good reasons to reuse names. For example, it is
common to use the names i, j and k as loop variables. If you avoid using them
in one method just because you used them somewhere else, you will probably
make the program harder to read.

6.10 More generalization

As another example of generalization, imagine you wanted a program that would
print a multiplication table of any size, not just the 6x6 table. You could add a
parameter to printMultTable:

public static void printMultTable (int high) {

int i = 1;

while (i <= high) {

6.10 More generalization 65

printMultiples (i);

i = i + 1;

}

}

I replaced the value 6 with the parameter high. If I invoke printMultTable

with the argument 7, I get

1 2 3 4 5 6

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24

5 10 15 20 25 30

6 12 18 24 30 36

7 14 21 28 35 42

which is fine, except that I probably want the table to be square (same num-
ber of rows and columns), which means I have to add another parameter to
printMultiples, to specify how many columns the table should have.

Just to be annoying, I will also call this parameter high, demonstrating that
different methods can have parameters with the same name (just like local
variables):

public static void printMultiples (int n, int high) {

int i = 1;

while (i <= high) {

System.out.print (n*i + " ");

i = i + 1;

}

newLine ();

}

public static void printMultTable (int high) {

int i = 1;

while (i <= high) {

printMultiples (i, high);

i = i + 1;

}

}

Notice that when I added a new parameter, I had to change the first line of the
method (the interface or prototype), and I also had to change the place where
the method is invoked in printMultTable. As expected, this program generates
a square 7x7 table:

1 2 3 4 5 6 7

2 4 6 8 10 12 14

3 6 9 12 15 18 21

4 8 12 16 20 24 28

5 10 15 20 25 30 35

6 12 18 24 30 36 42

7 14 21 28 35 42 49

66 Iteration

When you generalize a method appropriately, you often find that the resulting
program has capabilities you did not intend. For example, you might notice
that the multiplication table is symmetric, because ab = ba, so all the entries in
the table appear twice. You could save ink by printing only half the table. To
do that, you only have to change one line of printMultTable. Change

printMultiples (i, high);

to

printMultiples (i, i);

and you get

1

2 4

3 6 9

4 8 12 16

5 10 15 20 25

6 12 18 24 30 36

7 14 21 28 35 42 49

I’ll leave it up to you to figure out how it works.

6.11 Glossary

loop: A statement that executes repeatedly while or until some condition is
satisfied.

infinite loop: A loop whose condition is always true.

body: The statements inside the loop.

iteration: One pass through (execution of) the body of the loop, including the
evaluation of the condition.

encapsulate: To divide a large complex program into components (like meth-
ods) and isolate the components from each other (for example, by using
local variables).

local variable: A variable that is declared inside a method and that exists
only within that method. Local variables cannot be accessed from outside
their home method, and do not interfere with any other methods.

generalize: To replace something unnecessarily specific (like a constant value)
with something appropriately general (like a variable or parameter). Gen-
eralization makes code more versatile, more likely to be reused, and some-
times even easier to write.

development plan: A process for developing a program. In this chapter,
I demonstrated a style of development based on developing code to do
simple, specific things, and then encapsulating and generalizing. In Sec-
tion 5.2 I demonstrated a technique I called incremental development. In
later chapters I will suggest other styles of development.

Chapter 7

Strings and things

7.1 Invoking methods on objects

In Section 4.8 we used a Graphics object to draw circles in a window, and I used
the phrase “invoke a method on an object,” to refer to the statements like

g.drawOval (0, 0, width, height);

In this case drawOval is the method being invoked on the object named g.
At the time I didn’t provide a definition of object, and I still can’t provide a
complete definition, but it is time to try.

In Java and other object-oriented languages, objects are collections of related
data that come with a set of methods. These methods operate on the objects,
performing computations and sometimes modifying the object’s data.

So far we have only seen one object, g, so this definition might not mean much
yet. Another example is Strings. Strings are objects (and ints and doubles
are not). Based on the definition of object, you might ask “What is the data
contained in a String object?” and “What are the methods we can invoke on
String objects?”

The data contained in a String object are the letters of the string. There are
quite a few methods that operate on Strings, but I will only use a few in this
book. The rest are documented at

http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html

The first method we will look at is charAt, which allows you to extract letters
from a String. In order to store the result, we need a variable type that can
store individual letters (as opposed to strings). Individual letters are called
characters, and the variable type that stores them is called char.

chars work just like the other types we have seen:

char fred = ’c’;

if (fred == ’c’) {

68 Strings and things

System.out.println (fred);

}

Character values appear in single quotes (’c’). Unlike string values (which
appear in double quotes), character values can contain only a single letter or
symbol.

Here’s how the charAt method is used:

String fruit = "banana";

char letter = fruit.charAt(1);

System.out.println (letter);

The syntax fruit.charAt indicates that I am invoking the charAt method on
the object named fruit. I am passing the argument 1 to this method, which
indicates that I would like to know the first letter of the string. The result is a
character, which is stored in a char named letter. When I print the value of
letter, I get a surprise:

a

a is not the first letter of "banana". Unless you are a computer scientist. For
perverse reasons, computer scientists always start counting from zero. The 0th
letter (“zeroeth”) of "banana" is b. The 1th letter (“oneth”) is a and the 2th
(“twoeth”) letter is n.

If you want the zereoth letter of a string, you have to pass zero as an argument:

char letter = fruit.charAt(0);

7.2 Length

The second String method we’ll look at is length, which returns the number
of characters in the string. For example:

int length = fruit.length();

length takes no arguments, as indicated by (), and returns an integer, in this
case 6. Notice that it is legal to have a variable with the same name as a method
(although it can be confusing for human readers).

To find the last letter of a string, you might be tempted to try something like

int length = fruit.length();

char last = fruit.charAt (length); // WRONG!!

That won’t work. The reason is that there is no 6th letter in "banana". Since
we started counting at 0, the 6 letters are numbered from 0 to 5. To get the
last character, you have to subtract 1 from length.

int length = fruit.length();

char last = fruit.charAt (length-1);

7.3 Traversal 69

7.3 Traversal

A common thing to do with a string is start at the beginning, select each char-
acter in turn, do something to it, and continue until the end. This pattern of
processing is called a traversal. A natural way to encode a traversal is with a
while statement:

int index = 0;

while (index < fruit.length()) {

char letter = fruit.charAt (index);

System.out.println (letter);

index = index + 1;

}

This loop traverses the string and prints each letter on a line by itself. Notice
that the condition is index < fruit.length(), which means that when index

is equal to the length of the string, the condition is false and the body of the
loop is not executed. The last character we access is the one with the index
fruit.length()-1.

The name of the loop variable is index. An index is a variable or value used to
specify one member of an ordered set (in this case the set of characters in the
string). The index indicates (hence the name) which one you want. The set has
to be ordered so that each letter has an index and each index refers to a single
character.

As an exercise, write a method that takes a String as an argument and that
prints the letters backwards, all on one line.

7.4 Run-time errors

Way back in Section 1.3.2 I talked about run-time errors, which are errors that
don’t appear until a program has started running. In Java run-time errors are
called exceptions.

So far, you probably haven’t seen many run-time errors, because we haven’t been
doing many things that can cause one. Well, now we are. If you use the charAt
command and you provide an index that is negative or greater than length-1,
you will get an exception: specifically, a StringIndexOutOfBoundsException.
Try it and see how it looks.

If your program causes an exception, it prints an error message indicating the
type of exception and where in the program it occurred. Then the program
terminates.

7.5 Reading documentation

If you go to

70 Strings and things

http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html

and click on charAt, you get the following documentation (or something like
it):

public char charAt(int index)

Returns the character at the specified index.

An index ranges from 0 to length() - 1.

Parameters: index - the index of the character.

Returns: the character at the specified index of this string.

The first character is at index 0.

Throws: StringIndexOutOfBoundsException if the index is out of range.

The first line is the method’s prototype (see Section 4.12), which indicates the
name of the method, the type of the parameters, and the return type.

The next line describes what the method does. The next two lines explain the
parameters and return values. In this case the explanations are a bit redundant,
but the documentation is supposed to fit a standard format. The last line
explains what exceptions, if any, can be caused by this method.

7.6 The indexOf method

In some ways, indexOf is the opposite of charAt. charAt takes an index and
returns the character at that index. indexOf takes a character and finds the
index where that character appears.

charAt fails if the index is out of range, and causes an exception. indexOf fails
if the character does not appear in the string, and returns the value -1.

String fruit = "banana";

int index = fruit.indexOf(’a’);

This finds the index of the letter ’a’ in the string. In this case, the letter
appears three times, so it is not obvious what indexOf should do. According to
the documentation, it returns the index of the first appearance.

In order to find subsequent appearances, there is an alternate version of indexOf
(for an explanation of this kind of overloading, see Section 5.4). It takes a second
argument that indicates where in the string to start looking. If we invoke

int index = fruit.indexOf(’a’, 2);

it will start at the twoeth letter (the first n) and find the second a, which is at
index 3. If the letter happens to appear at the starting index, the starting index
is the answer. Thus,

int index = fruit.indexOf(’a’, 5);

7.7 Looping and counting 71

returns 5. Based on the documentation, it is a little tricky to figure out what
happens if the starting index is out of range:

indexOf returns the index of the first occurrence of the character
in the character sequence represented by this object that is greater
than or equal to fromIndex, or -1 if the character does not occur.

One way to figure out what this means is to try out a couple of cases. Here are
the results of my experiments:

• If the starting index is greater than or equal to length(), the result is -1,
indicating that the letter does not appear at any index greater than the
starting index.

• If the starting index is negative, the result is 1, indicating the first ap-
pearance of the letter at an index greater than the starting index.

If you go back and look at the documentation, you’ll see that this behavior is
consistent with the definition, even if it was not immediately obvious. Now that
we have a better idea how indexOf works, we can use it as part of a program.

7.7 Looping and counting

The following program counts the number of times the letter ’a’ appears in a
string:

String fruit = "banana";

int length = fruit.length();

int count = 0;

int index = 0;

while (index < length) {

if (fruit.charAt(index) == ’a’) {

count = count + 1;

}

index = index + 1;

}

System.out.println (count);

This program demonstrates a common idiom, called a counter. The variable
count is initialized to zero and then incremented each time we find an ’a’ (to
increment is to increase by one; it is the opposite of decrement, and unrelated
to excrement, which is a noun). When we exit the loop, count contains the
result: the total number of a’s.

As an exercise, encapsulate this code in a method named countLetters, and
generalize it so that it accepts the string and the letter as arguments.

As a second exercise, rewrite the method so that it uses indexOf to locate the
a’s, rather than checking the characters one by one.

72 Strings and things

7.8 Increment and decrement operators

Incrementing and decrementing are such common operations that Java provides
special operators for them. The ++ operator adds one to the current value of an
int or char. -- subtracts one. Neither operator works on doubles, booleans
or Strings.

Technically, it is legal to increment a variable and use it in an expression at the
same time. For example, you might see something like:

System.out.println (i++);

Looking at this, it is not clear whether the increment will take effect before or
after the value is printed. Because expressions like this tend to be confusing, I
would discourage you from using them. In fact, to discourage you even more,
I’m not going to tell you what the result is. If you really want to know, you can
try it.

Using the increment operators, we can rewrite the letter-counter:

int index = 0;

while (index < length) {

if (fruit.charAt(index) == ’a’) {

count++;

}

index++;

}

It is a common error to write something like

index = index++; // WRONG!!

Unfortunately, this is syntactically legal, so the compiler will not warn you. The
effect of this statement is to leave the value of index unchanged. This is often
a difficult bug to track down.

Remember, you can write index = index +1;, or you can write index++;, but
you shouldn’t mix them.

7.9 Character arithmetic

It may seem odd, but you can do arithmetic with characters! The expression
’a’ + 1 yields the value ’b’. Similarly, if you have a variable named letter

that contains a character, then letter - ’a’ will tell you where in the alphabet
it appears (keeping in mind that ’a’ is the zeroeth letter of the alphabet and ’z’
is the 25th).

This sort of thing is useful for converting between the characters that contain
numbers, like ’0’, ’1’ and ’2’, and the corresponding integers. They are not the
same thing. For example, if you try this

char letter = ’3’;

int x = (int) letter;

System.out.println (x);

7.9 Character arithmetic 73

you might expect the value 3, but depending on your environment, you might
get 51, which is the ASCII code that is used to represent the character ’3’, or
you might get something else altogether. To convert ’3’ to the corresponding
integer value you can subtract ’0’:

int x = (int)(letter - ’0’);

Technically, in both of these examples the typecast ((int)) is unnecessary, since
Java will convert type char to type int automatically. I included the typecasts
to emphasize the difference between the types, and because I’m a stickler about
that sort of thing.

Since this conversion can be a little ugly, it is preferable to use the digit method
in the Character class. For example:

int x = Character.digit (letter, 10);

converts letter to the corresponding digit, interpreting it as a base 10 number.

Another use for character arithmetic is to loop through the letters of the al-
phabet in order. For example, in Robert McCloskey’s book Make Way for

Ducklings, the names of the ducklings form an abecedarian series: Jack, Kack,
Lack, Mack, Nack, Ouack, Pack and Quack. Here is a loop that prints these
names in order:

char letter = ’J’;

while (letter <= ’Q’) {

System.out.println (letter + "ack");

letter++;

}

Notice that in addition to the arithmetic operators, we can also use the condi-
tional operators on characters. The output of this program is:

Jack

Kack

Lack

Mack

Nack

Oack

Pack

Qack

Of course, that’s not quite right because I’ve misspelled “Ouack” and “Quack.”
As an exercise, modify the program to correct this error.

7.9.1 Typecasting for experts

Here’s a puzzler: normally, the statement x++ is exactly equivalent to x = x +

1. Unless x is a char! In that case, x++ is legal, but x = x + 1 causes an error.

Try it out and see what the error message is, then see if you can figure out what
is going on.

74 Strings and things

7.10 Strings are immutable

As you look over the documentation of the String methods, you might notice
toUpperCase and toLowerCase. These methods are often a source of confusion,
because it sounds like they have the effect of changing (or mutating) an existing
string. Actually, neither these methods nor any others can change a string,
because strings are immutable.

When you invoke toUpperCase on a String, you get a new String as a return
value. For example:

String name = "Alan Turing";

String upperName = name.toUpperCase ();

After the second line is executed, upperName contains the value "ALAN TURING",
but name still contains "Alan Turing".

7.11 Strings are incomparable

It is often necessary to compare strings to see if they are the same, or to see
which comes first in alphabetical order. It would be nice if we could use the
comparison operators, like == and >, but we can’t.

In order to compare Strings, we have to use the equals and compareTo meth-
ods. For example:

String name1 = "Alan Turing";

String name2 = "Ada Lovelace";

if (name1.equals (name2)) {

System.out.println ("The names are the same.");

}

int flag = name1.compareTo (name2);

if (flag == 0) {

System.out.println ("The names are the same.");

} else if (flag < 0) {

System.out.println ("name1 comes before name2.");

} else if (flag > 0) {

System.out.println ("name2 comes before name1.");

}

The syntax here is a little weird. To compare two things, you have to invoke a
method on one of them and pass the other as an argument.

The return value from equals is straightforward enough; true if the strings
contain the same characters, and false otherwise.

The return value from compareTo is a little odd. It is the difference between the
first characters in the strings that differ. If the strings are equal, it is 0. If the
first string (the one on which the method is invoked) comes first in the alphabet,

7.12 Glossary 75

the difference is negative. Otherwise, the difference is positive. In this case the
return value is positive 8, because the second letter of “Ada” comes before the
second letter of “Alan” by 8 letters.

Using compareTo is often tricky, and I never remember which way is which
without looking it up, but the good news is that the interface is pretty standard
for comparing many types of objects, so once you get it you are all set.

Just for completeness, I should admit that it is legal, but very seldom correct,
to use the == operator with Strings. But what that means will not make sense
until later, so for now, don’t do it.

7.12 Glossary

object: A collection of related data that comes with a set of methods that
operate on it. The objects we have used so far are the Graphics object
provided by the system, and Strings.

index: A variable or value used to select one of the members of an ordered set,
like a character from a string.

traverse: To iterate through all the elements of a set performing a similar
operation on each.

counter: A variable used to count something, usually initialized to zero and
then incremented.

increment: Increase the value of a variable by one. The increment operator in
Java is ++.

decrement: Decrease the value of a variable by one. The decrement operator
in Java is --.

exception: A run time error. Exceptions cause the execution of a program to
terminate.

Chapter 8

Interesting objects

8.1 What’s interesting?

Although Strings are objects, they are not very interesting objects, because

• They are immutable.

• They have no instance variables.

• You don’t have to use the new command to create one.

In this chapter, we are going to use two new object types that are part of the
Java language, Point and Rectangle. Right from the start, I want to make it
clear that these points and rectangles are not graphical objects that appear on
the screen. They are variables that contain data, just like ints and doubles.
Like other variables, they are used internally to perform computations.

The definitions of the Point and Rectangle classes are in the java.awt package,
so we have to import them.

8.2 Packages

The built-in Java classes are divided into a number of packages, including
java.lang, which contains almost all of the classes we have seen so far, and
java.awt, which contains classes that pertain to the Java Abstract Window
Toolkit (AWT), which contains classes for windows, buttons, graphics, etc.

In order to use a package, you have to import it, which is why the program
in Section 4.8 starts with import java.awt.*. The * indicates that we want
to import all the classes in the AWT package. If you want, you can name the
classes you want to import explicitly, but there is no great advantage. The
classes in java.lang are imported automatically, which is why most of our
programs haven’t required an import statement.

78 Interesting objects

All import statements appear at the beginning of the program, outside the class
definition.

8.3 Point objects

At the most basic level, a point is two numbers (coordinates) that we treat
collectively as a single object. In mathematical notation, points are often written
in parentheses, with a comma separating the coordinates. For example, (0, 0)
indicates the origin, and (x, y) indicates the point x units to the right and y
units up from the origin.

In Java, a point is represented by a Point object. To create a new point, you
have to use the new command:

Point blank;

blank = new Point (3, 4);

The first line is a conventional variable declaration: blank has type Point. The
second line is kind of funny-looking; it invokes the new command, specifies the
type of the new object, and provides arguments. It will probably not surprise
you that the arguments are the coordinates of the new point, (3, 4).

The result of the new command is a reference to the new point. I’ll explain
references more later; for now the important thing is that the variable blank

contains a reference to the newly-created object. There is a standard way to
diagram this assignment, shown in the figure.

4y

3x

blank

As usual, the name of the variable blank appears outside the box and its value
appears inside the box. In this case, that value is a reference, which is shown
graphically with a dot and an arrow. The arrow points to the object we’re
referring to.

The big box shows the newly-created object with the two values in it. The
names x and y are the names of the instance variables.

Taken together, all the variables, values, and objects in a program are called the
state. Diagrams like this that show the state of the program are called state
diagrams. As the program runs, the state changes, so you should think of a
state diagram as a snapshot of a particular point in the execution.

8.4 Instance variables 79

8.4 Instance variables

The pieces of data that make up an object are sometimes called components,
records, or fields. In Java they are called instance variables because each object,
which is an instance of its type, has its own copy of the instance variables.

It’s like the glove compartment of a car. Each car is an instance of the type
“car,” and each car has its own glove compartment. If you asked me to get
something from the glove compartment of your car, you would have to tell me
which car is yours.

Similarly, if you want to read a value from an instance variable, you have to
specify the object you want to get it from. In Java this is done using “dot
notation.”

int x = blank.x;

The expression blank.x means “go to the object blank refers to, and get the
value of x.” In this case we assign that value to a local variable named x. Notice
that there is no conflict between the local variable named x and the instance
variable named x. The purpose of dot notation is to identify which variable you
are referring to unambiguously.

You can use dot notation as part of any Java expression, so the following are
legal.

System.out.println (blank.x + ", " + blank.y);

int distance = blank.x * blank.x + blank.y * blank.y;

The first line prints 3, 4; the second line calculates the value 25.

8.5 Objects as parameters

You can pass objects as parameters in the usual way. For example

public static void printPoint (Point p) {

System.out.println ("(" + p.x + ", " + p.y + ")");

}

is a method that takes a point as an argument and prints it in the standard
format. If you invoke printPoint (blank), it will print (3, 4). Actually, Java
has a built-in method for printing Points. If you invoke System.out.println

(blank), you get

java.awt.Point[x=3,y=4]

This is a standard format Java uses for printing objects. It prints the name of
the type, followed by the contents of the object, including the names and values
of the instance variables.

As a second example, we can rewrite the distance method from Section 5.2 so
that it takes two Points as parameters instead of four doubles.

80 Interesting objects

public static double distance (Point p1, Point p2) {

double dx = (double)(p2.x - p1.x);

double dy = (double)(p2.y - p1.y);

return Math.sqrt (dx*dx + dy*dy);

}

The typecasts are not really necessary; I just added them as a reminder that
the instance variables in a Point are integers.

8.6 Rectangles

Rectangles are similar to points, except that they have four instance variables,
named x, y, width and height. Other than that, everything is pretty much the
same.

Rectangle box = new Rectangle (0, 0, 100, 200);

creates a new Rectangle object and makes box refer to it. The figure shows
the effect of this assignment.

100width0x

0 200heighty

box

If you print box, you get

java.awt.Rectangle[x=0,y=0,width=100,height=200]

Again, this is the result of a built-in Java method that knows how to print
Rectangle objects.

8.7 Objects as return types

You can write methods that return objects. For example, findCenter takes a
Rectangle as an argument and returns a Point that contains the coordinates
of the center of the Rectangle:

public static Point findCenter (Rectangle box) {

int x = box.x + box.width/2;

int y = box.y + box.height/2;

return new Point (x, y);

}

Notice that you can use new to create a new object, and then immediately use
the result as a return value.

8.8 Objects are mutable 81

8.8 Objects are mutable

You can change the contents of an object by making an assignment to one of
its instance variables. For example, to “move” a rectangle without changing its
size, you could modify the x and y values:

box.x = box.x + 50;

box.y = box.y + 100;

The result is shown in the figure:

box

x

200heighty

100width

100

50

We could take this code and encapsulate it in a method, and generalize it to
move the rectangle by any amount:

public static void moveRect (Rectangle box, int dx, int dy) {

box.x = box.x + dx;

box.y = box.y + dy;

}

The variables dx and dy indicate how far to move the rectangle in each direction.
Invoking this method has the effect of modifying the Rectangle that is passed
as an argument.

Rectangle box = new Rectangle (0, 0, 100, 200);

moveRect (box, 50, 100);

System.out.println (box);

prints java.awt.Rectangle[x=50,y=100,width=100,height=200].

Modifying objects by passing them as arguments to methods can be useful, but
it can also make debugging more difficult because it is not always clear which
method invocations do or do not modify their arguments. Later, I will discuss
some pros and cons of this programming style.

In the meantime, we can enjoy the luxury of Java’s built-in methods, which
include translate, which does exactly the same thing as moveRect, although
the syntax for invoking it is a little different. Instead of passing the Rectangle

as an argument, we invoke translate on the Rectangle and pass only dx and
dy as arguments.

box.translate (50, 100);

The effect is exactly the same.

8.9 Aliasing

Remember that when you make an assignment to an object variable, you are
assigning a reference to an object. It is possible to have multiple variables that
refer to the same object. For example, this code:

82 Interesting objects

Rectangle box1 = new Rectangle (0, 0, 100, 200);

Rectangle box2 = box1;

generates a state diagram that looks like this:

x

heighty

widthbox1

box2

0

0

100

200

Both box1 and box2 refer or “point” to the same object. In other words, this
object has two names, box1 and box2. When a person uses two names, it’s
called aliasing. Same thing with objects.

When two variables are aliased, any changes that affect one variable also affect
the other. For example:

System.out.println (box2.width);

box1.grow (50, 50);

System.out.println (box2.width);

The first line prints 100, which is the width of the Rectangle referred to by
box2. The second line invokes the grow method on box1, which expands the
Rectangle by 50 pixels in every direction (see the documentation for more
details). The effect is shown in the figure:

x

heighty

widthbox1

box2

−50

−50

200

300

As should be clear from this figure, whatever changes are made to box1 also
apply to box2. Thus, the value printed by the third line is 200, the width of
the expanded rectangle. (As an aside, it is perfectly legal for the coordinates of
a Rectangle to be negative.)

As you can tell even from this simple example, code that involves aliasing can
get confusing fast, and it can be very difficult to debug. In general, aliasing
should be avoided or used with care.

8.10 null

When you create an object variable, remember that you are creating a reference

to an object. Until you make the variable point to an object, the value of the
variable is null. null is a special value in Java (and a Java keyword) that is
used to mean “no object.”

The declaration Point blank; is equivalent to this initialization

8.11 Garbage collection 83

Point blank = null;

and is shown in the following state diagram:

blank

The value null is represented by a dot with no arrow.

If you try to use a null object, either by accessing an instance variable or invoking
a method, you will get a NullPointerException. The system will print an error
message and terminate the program.

Point blank = null;

int x = blank.x; // NullPointerException

blank.translate (50, 50); // NullPointerException

On the other hand, it is legal to pass a null object as an argument or receive
one as a return value. In fact, it is common to do so, for example to represent
an empty set or indicate an error condition.

8.11 Garbage collection

In Section 8.9 we talked about what happens when more than one variable refers
to the same object. What happens when no variable refers to an object? For
example:

Point blank = new Point (3, 4);

blank = null;

The first line creates a new Point object and makes blank refer to it. The
second line changes blank so that instead of referring to the object, it refers to
nothing (the null object).

4y

3x

blank

If no one refers to an object, then no one can read or write any of its values, or
invoke a method on it. In effect, it ceases to exist. We could keep the object in
memory, but it would only waste space, so periodically as your program runs,
the Java system looks for stranded objects and reclaims them, in a process called
garbage collection. Later, the memory space occupied by the object will be
available to be used as part of a new object.

You don’t have to do anything to make garbage collection work, and in general
you will not be aware of it.

84 Interesting objects

8.12 Objects and primitives

There are two kinds of types in Java, primitive types and object types. Prim-
itives, like int and boolean begin with lower-case letters; object types begin
with upper-case letters. This distinction is useful because it reminds us of some
of the differences between them:

• When you declare a primitive variable, you get storage space for a prim-
itive value. When you declare an object variable, you get a space for a
reference to an object. In order to get space for the object itself, you have
to use the new command.

• If you don’t initialize a primitive type, it is given a default value that
depends on the type. For example, 0 for ints and true for booleans.
The default value for object types is null, which indicates no object.

• Primitive variables are well isolated in the sense that there is nothing you
can do in one method that will affect a variable in another method. Object
variables can be tricky to work with because they are not as well isolated.
If you pass a reference to an object as an argument, the method you invoke
might modify the object, in which case you will see the effect. The same
is true when you invoke a method on an object. Of course, that can be a
good thing, but you have to be aware of it.

There is one other difference between primitives and object types. You cannot
add new primitives to the Java language (unless you get yourself on the stan-
dards committee), but you can create new object types! We’ll see how in the
next chapter.

8.13 Glossary

package: A collection of classes. The built-in Java classes are organized in
packages.

AWT: The Abstract Window Toolkit, one of the biggest and most commonly-
used Java packages.

instance: An example from a category. My cat is an instance of the category
“feline things.” Every object is an instance of some class.

instance variable: One of the named data items that make up an object. Each
object (instance) has its own copy of the instance variables for its class.

reference: A value that indicates an object. In a state diagram, a reference
appears as an arrow.

aliasing: The condition when two or more variables refer to the same object.

garbage collection: The process of finding objects that have no references
and reclaiming their storage space.

8.13 Glossary 85

state: A complete description of all the variables and objects and their values,
at a given point during the execution of a program.

state diagram: A snapshot of the state of a program, shown graphically.

Chapter 9

Create your own objects

9.1 Class definitions and object types

Every time you write a class definition, you create a new Object type, with the
same name as the class. Way back in Section 1.5, when we defined the class
named Hello, we also created an object type named Hello. We didn’t create
any variables with type Hello, and we didn’t use the new command to create
any Hello objects, but we could have!

That example may not make any sense, since there is no reason to create a
Hello object, and it is not clear what it would be good for if we did. In this
chapter, we will look at some examples of class definitions that create useful

new Object types.

Here are the most important ideas in this chapter:

• Defining a new class also creates a new object type with the same name.

• A class definition is like a template for objects: it determines what instance
variables the objects have and what methods can operate on them.

• Every object belongs to some object type; hence, it is an instance of some
class.

• When you invoke the new command to create an object, Java invokes a
special method called a constructor to initialize the instance variables.
You provide one or more constructors as part of the class definition.

• Typically all the methods that operate on a type go in the class definition
for that type.

Here are some syntax issues about class definitions:

• Class names (and hence object types) always begin with a capital letter,
which helps distinguish them from primitive types and variable names.

88 Create your own objects

• You usually put one class definition in each file, and the name of the file
must be the same as the name of the class, with the suffix .java. For
example, the Time class is defined in the file named Time.java.

• In any program, one class is designated as the startup class. The startup
class must contain a method named main, which is where the execution of
the program begins. Other classes may have a method named main, but
they will not be executed.

With those issues out of the way, let’s look at an example of a user-defined type,
Time.

9.2 Time

A common motivation for creating a new Object type is to take several related
pieces of data and encapsulate them into an object that can be manipulated
(passed as an argument, operated on) as a single unit. We have already seen
two built-in types like this, Point and Rectangle.

Another example, which we will implement ourselves, is Time, which is used
to record the time of day. The various pieces of information that form a time
are the hour, minute and second. Because every Time object will contain these
data, we need to create instance variables to hold them.

The first step is to decide what type each variable should be. It seems clear
that hour and minute should be integers. Just to keep things interesting, let’s
make second a double, so we can record fractions of a second.

Instance variables are declared at the beginning of the class definition, outside
of any method definition, like this:

class Time {

int hour, minute;

double second;

}

All by itself, this code fragment is a legal class definition. The state diagram
for a Time object would look like this:

hour 0

minute 0

0.0second

After declaring the instance variables, the next step is usually to define a con-
structor for the new class.

9.3 Constructors 89

9.3 Constructors

The usual role of a constructor is to initialize the instance variables. The syntax
for constructors is similar to that of other methods, with three exceptions:

• The name of the constructor is the same as the name of the class.

• Constructors have no return type and no return value.

• The keyword static is omitted.

Here is an example for the Time class:

public Time () {

this.hour = 0;

this.minute = 0;

this.second = 0.0;

}

Notice that where you would expect to see a return type, between public and
Time, there is nothing. That’s how we (and the compiler) can tell that this is a
constructor.

This constructor does not take any arguments, as indicated by the empty paren-
theses (). Each line of the constructor initializes an instance variable to an
arbitrary default value (in this case, midnight). The name this is a special
keyword that is the name of the object we are creating. You can use this the
same way you use the name of any other object. For example, you can read and
write the instance variables of this, and you can pass this as an argument to
other methods.

But you do not declare this and you do not use new to create it. In fact, you
are not even allowed to make an assignment to it! this is created by the system;
all you have to do is store values in its instance variables.

A common error when writing constructors is to put a return statement at the
end. Resist the temptation.

9.4 More constructors

Constructors can be overloaded, just like other methods, which means that you
can provide multiple constructors with different parameters. Java knows which
constructor to invoke by matching the arguments of the new command with the
parameters of the constructors.

It is very common to have one constructor that takes no arguments (shown
above), and one constructor that takes a parameter list that is identical to the
list of instance variables. For example:

90 Create your own objects

public Time (int hour, int minute, double second) {

this.hour = hour;

this.minute = minute;

this.second = second;

}

The names and types of the parameters are exactly the same as the names and
types of the instance variables. All the constructor does is copy the information
from the parameters to the instance variables.

If you go back and look at the documentation for Points and Rectangles, you
will see that both classes provide constructors like this. Overloading construc-
tors provides the flexibility to create an object first and then fill in the blanks,
or to collect all the information before creating the object.

So far this might not seem very interesting, and in fact it is not. Writing
constructors is a boring, mechanical process. Once you have written two, you
will find that you can churn them out in your sleep, just by looking at the list
of instance variables.

9.5 Creating a new object

Although constructors look like methods, you never invoke them directly. In-
stead, when you use the new command, the system allocates space for the new
object and then invokes your constructor to initialize the instance variables.

The following program demonstrates two ways to create and initialize Time

objects:

class Time {

int hour, minute;

double second;

public Time () {

this.hour = 0;

this.minute = 0;

this.second = 0.0;

}

public Time (int hour, int minute, double second) {

this.hour = hour;

this.minute = minute;

this.second = second;

}

public static void main (String[] args) {

// one way to create and initialize a Time object

Time t1 = new Time ();

9.6 Printing an object 91

t1.hour = 11;

t1.minute = 8;

t1.second = 3.14159;

System.out.println (t1);

// another way to do the same thing

Time t2 = new Time (11, 8, 3.14159);

System.out.println (t2);

}

}

As an exercise, figure out the flow of execution through this program.

In main, the first time we invoke the new command, we provide no arguments,
so Java invokes the first constructor. The next few lines assign values to each
of the instance variables.

The second time we invoke the new command, we provide arguments that match
the parameters of the second constructor. This way of initializing the instance
variables is more concise (and slightly more efficient), but it can be harder to
read, since it is not as clear which values are assigned to which instance variables.

9.6 Printing an object

The output of this program is:

Time@80cc7c0

Time@80cc807

When Java prints the value of a user-defined object type, it prints the name
of the type and a special hexadecimal (base 16) code that is unique for each
object. This code is not meaningful in itself; in fact, it can vary from machine
to machine and even from run to run. But it can be useful for debugging, in
case you want to keep track of individual objects.

In order to print objects in a way that is more meaningful to users (as opposed
to programmers), you usually want to write a method called something like
printTime:

public static void printTime (Time t) {

System.out.println (t.hour + ":" + t.minute + ":" + t.second);

}

Compare this method to the version of printTime in Section 3.10.

The output of this method, if we pass either t1 or t2 as an argument, is
11:8:3.14159. Although this is recognizable as a time, it is not quite in the
standard format. For example, if the number of minutes or seconds is less than
10, we expect a leading 0 as a place-keeper. Also, we might want to drop the
decimal part of the seconds. In other words, we want something like 11:08:03.

In most languages, there are simple ways to control the output format for num-
bers. In Java there are no simple ways.

92 Create your own objects

Java provides very powerful tools for printing formatted things like times and
dates, and also for interpreting formatted input. Unfortunately, these tools are
not very easy to use, so I am going to leave them out of this book. If you want,
though, you can take a look at the documentation for the Date class in the
java.util package.

9.7 Operations on objects

Even though we can’t print times in an optimal format, we can still write meth-
ods that manipulate Time objects. In the next few sections, I will demonstrate
several of the possible interfaces for methods that operate on objects. For some
operations, you will have a choice of several possible interfaces, so you should
consider the pros and cons of each of these:

pure function: Takes objects and/or primitives as arguments but does not
modify the objects. The return value is either a primitive or a new object
created inside the method.

modifier: Takes objects as arguments and modifies some or all of them. Often
returns void.

fill-in method: One of the arguments is an “empty” object that gets filled in
by the method. Technically, this is a type of modifier.

9.8 Pure functions

A method is considered a pure function if the result depends only on the ar-
guments, and it has no side effects like modifying an argument or printing
something. The only result of invoking a pure function is the return value.

One example is after, which compares two Times and returns a boolean that
indicates whether the first operand comes after the second:

public static boolean after (Time time1, Time time2) {

if (time1.hour > time2.hour) return true;

if (time1.hour < time2.hour) return false;

if (time1.minute > time2.minute) return true;

if (time1.minute < time2.minute) return false;

if (time1.second > time2.second) return true;

return false;

}

What is the result of this method if the two times are equal? Does that seem like
the appropriate result for this method? If you were writing the documentation
for this method, would you mention that case specifically?

9.8 Pure functions 93

A second example is addTime, which calculates the sum of two times. For
example, if it is 9:14:30, and your breadmaker takes 3 hours and 35 minutes,
you could use addTime to figure out when the bread will be done.

Here is a rough draft of this method that is not quite right:

public static Time addTime (Time t1, Time t2) {

Time sum = new Time ();

sum.hour = t1.hour + t2.hour;

sum.minute = t1.minute + t2.minute;

sum.second = t1.second + t2.second;

return sum;

}

Although this method returns a Time object, it is not a constructor. You should
go back and compare the syntax of a method like this with the syntax of a
constructor, because it is easy to get confused.

Here is an example of how to use this method. If currentTime contains the
current time and breadTime contains the amount of time it takes for your
breadmaker to make bread, then you could use addTime to figure out when
the bread will be done.

Time currentTime = new Time (9, 14, 30.0);

Time breadTime = new Time (3, 35, 0.0);

Time doneTime = addTime (currentTime, breadTime);

printTime (doneTime);

The output of this program is 12:49:30.0, which is correct. On the other hand,
there are cases where the result is not correct. Can you think of one?

The problem is that this method does not deal with cases where the number of
seconds or minutes adds up to more than 60. In that case, we have to “carry”
the extra seconds into the minutes column, or extra minutes into the hours
column.

Here’s a second, corrected version of this method.

public static Time addTime (Time t1, Time t2) {

Time sum = new Time ();

sum.hour = t1.hour + t2.hour;

sum.minute = t1.minute + t2.minute;

sum.second = t1.second + t2.second;

if (sum.second >= 60.0) {

sum.second -= 60.0;

sum.minute += 1;

}

if (sum.minute >= 60) {

sum.minute -= 60;

sum.hour += 1;

}

return sum;

94 Create your own objects

}

Although it’s correct, it’s starting to get big. Later, I will suggest an alternate
approach to this problem that will be much shorter.

This code demonstrates two operators we have not seen before, += and -=.
These operators provide a concise way to increment and decrement variables.
They are similar to ++ and --, except (1) they work on doubles as well as ints,
and (2) the amount of the increment does not have to be 1. The statement
sum.second -= 60.0; is equivalent to sum.second = sum.second - 60;

9.9 Modifiers

As an example of a modifier, consider increment, which adds a given number
of seconds to a Time object. Again, a rough draft of this method looks like:

public static void increment (Time time, double secs) {

time.second += secs;

if (time.second >= 60.0) {

time.second -= 60.0;

time.minute += 1;

}

if (time.minute >= 60) {

time.minute -= 60;

time.hour += 1;

}

}

The first line performs the basic operation; the remainder deals with the same
cases we saw before.

Is this method correct? What happens if the argument secs is much greater
than 60? In that case, it is not enough to subtract 60 once; we have to keep
doing it until second is below 60. We can do that by simply replacing the if

statements with while statements:

public static void increment (Time time, double secs) {

time.second += secs;

while (time.second >= 60.0) {

time.second -= 60.0;

time.minute += 1;

}

while (time.minute >= 60) {

time.minute -= 60;

time.hour += 1;

}

}

This solution is correct, but not very efficient. Can you think of a solution that
does not require iteration?

9.10 Fill-in methods 95

9.10 Fill-in methods

Occasionally you will see methods like addTime written with a different interface
(different arguments and return values). Instead of creating a new object every
time addTime is invoked, we could require the caller to provide an “empty”
object where addTime should store the result. Compare the following with the
previous version:

public static void addTimeFill (Time t1, Time t2, Time sum) {

sum.hour = t1.hour + t2.hour;

sum.minute = t1.minute + t2.minute;

sum.second = t1.second + t2.second;

if (sum.second >= 60.0) {

sum.second -= 60.0;

sum.minute += 1;

}

if (sum.minute >= 60) {

sum.minute -= 60;

sum.hour += 1;

}

}

One advantage of this approach is that the caller has the option of reusing the
same object repeatedly to perform a series of additions. This can be slightly
more efficient, although it can be confusing enough to cause subtle errors. For
the vast majority of programming, it is worth spending a little run time to avoid
a lot of debugging time.

9.11 Which is best?

Anything that can be done with modifiers and fill-in methods can also be done
with pure functions. In fact, there are programming languages, called func-
tional programming languages, that only allow pure functions. Some program-
mers believe that programs that use pure functions are faster to develop and
less error-prone than programs that use modifiers. Nevertheless, there are times
when modifiers are convenient, and some cases where functional programs are
less efficient.

In general, I recommend that you write pure functions whenever it is reasonable
to do so, and resort to modifiers only if there is a compelling advantage. This
approach might be called a functional programming style.

9.12 Incremental development vs. planning

In this chapter I have demonstrated an approach to program development I
refer to as rapid prototyping with iterative improvement. In each case,

96 Create your own objects

I wrote a rough draft (or prototype) that performed the basic calculation, and
then tested it on a few cases, correcting flaws as I found them.

Although this approach can be effective, it can lead to code that is unnecessarily
complicated—since it deals with many special cases—and unreliable—since it
is hard to convince yourself that you have found all the errors.

An alternative is high-level planning, in which a little insight into the problem
can make the programming much easier. In this case the insight is that a Time

is really a three-digit number in base 60! The second is the “ones column,” the
minute is the “60’s column”, and the hour is the “3600’s column.”

When we wrote addTime and increment, we were effectively doing addition in
base 60, which is why we had to “carry” from one column to the next.

Thus an alternate approach to the whole problem is to convert Times into
doubles and take advantage of the fact that the computer already knows how
to do arithmetic with doubles. Here is a method that converts a Time into a
double:

public static double convertToSeconds (Time t) {

int minutes = t.hour * 60 + t.minute;

double seconds = minutes * 60 + t.second;

return seconds;

}

Now all we need is a way to convert from a double to a Time object. We could
write a method to do it, but it might make more sense to write it as a third
constructor:

public Time (double secs) {

this.hour = (int) (secs / 3600.0);

secs -= this.hour * 3600.0;

this.minute = (int) (secs / 60.0);

secs -= this.minute * 60;

this.second = secs;

}

This constructor is a little different from the others, since it involves some
calculation along with assignments to the instance variables.

You might have to think a bit to convince yourself that the technique I am using
to convert from one base to another is correct. Assuming you are convinced, we
can use these methods to rewrite addTime:

public static Time addTime (Time t1, Time t2) {

double seconds = convertToSeconds (t1) + convertToSeconds (t2);

return new Time (seconds);

}

This is much shorter than the original version, and it is much easier to demon-
strate that it is correct (assuming, as usual, that the methods it invokes are
correct). As an exercise, rewrite increment the same way.

9.13 Generalization 97

9.13 Generalization

In some ways converting from base 60 to base 10 and back is harder than just
dealing with times. Base conversion is more abstract; our intuition for dealing
with times is better.

But if we have the insight to treat times as base 60 numbers, and make the
investment of writing the conversion methods (convertToSeconds and the third
constructor), we get a program that is shorter, easier to read and debug, and
more reliable.

It is also easier to add more features later. For example, imagine subtracting
two Times to find the duration between them. The naive approach would be
to implement subtraction complete with “borrowing.” Using the conversion
methods would be much easier.

Ironically, sometimes making a problem harder (more general) makes is easier
(fewer special cases, fewer opportunities for error).

9.14 Algorithms

When you write a general solution for a class of problems, as opposed to a specific
solution to a single problem, you have written an algorithm. I mentioned this
word in Chapter 1, but did not define it carefully. It is not easy to define, so I
will try a couple of approaches.

First, consider some things that are not algorithms. For example, when you
learned to multiply single-digit numbers, you probably memorized the multipli-
cation table. In effect, you memorized 100 specific solutions, so that knowledge
is not really algorithmic.

But if you were “lazy,” you probably cheated by learning a few tricks. For
example, to find the product of n and 9, you can write n − 1 as the first digit
and 10 − n as the second digit. This trick is a general solution for multiplying
any single-digit number by 9. That’s an algorithm!

Similarly, the techniques you learned for addition with carrying, subtraction
with borrowing, and long division are all algorithms. One of the characteristics
of algorithms is that they do not require any intelligence to carry out. They
are mechanical processes in which each step follows from the last according to
a simple set of rules.

In my opinion, it is embarrassing that humans spend so much time in school
learning to execute algorithms that, quite literally, require no intelligence.

On the other hand, the process of designing algorithms is interesting, intellec-
tually challenging, and a central part of what we call programming.

Some of the things that people do naturally, without difficulty or conscious
thought, are the most difficult to express algorithmically. Understanding natural

98 Create your own objects

language is a good example. We all do it, but so far no one has been able to
explain how we do it, at least not in the form of an algorithm.

Later you will have the opportunity to design simple algorithms for a variety of
problems.

9.15 Glossary

class: Previously, I defined a class as a collection of related methods. In this
chapter we learned that a class definition is also a template for a new type
of object.

instance: A member of a class. Every object is an instance of some class.

constructor: A special method that initializes the instance variables of a
newly-constructed object.

project: A collection of one or more class definitions (one per file) that make
up a program.

startup class: The class that contains the main method where execution of
the program begins.

function: A method whose result depends only on its parameters, and that
has no side-effects other than returning a value.

functional programming style: A style of program design in which the ma-
jority of methods are functions.

modifier: A method that changes one or more of the objects it receives as
parameters, and usually returns void.

fill-in method: A type of method that takes an “empty” object as a parameter
and fills in its instance variables instead of generating a return value. This
type of method is usually not the best choice.

algorithm: A set of instructions for solving a class of problems by a mechanical
process.

Chapter 10

Arrays

An array is a set of values where each value is identified by an index. You can
make an array of ints, doubles, or any other type, but all the values in an array
have to have the same type.

Syntactically, array types look like other Java types except they are followed
by []. For example, int[] is the type “array of integers” and double[] is the
type “array of doubles.”

You can declare variables with these types in the usual ways:

int[] count;

double[] values;

Until you initialize these variables, they are set to null. To create the array
itself, use the new command.

count = new int[4];

values = new double[size];

The first assignment makes count refer to an array of 4 integers; the second
makes values refer to an array of doubles. The number of elements in values

depends on size. You can use any integer expression as an array size.

The following figure shows how arrays are represented in state diagrams:

count

0 1 2 3

0 0 0 0

The large numbers inside the boxes are the elements of the array. The small
numbers outside the boxes are the indices used to identify each box. When you
allocate a new array, the elements are initialized to zero.

10.1 Accessing elements

To store values in the array, use the [] operator. For example count[0] refers to
the “zeroeth” element of the array, and count[1] refers to the “oneth” element.

100 Arrays

You can use the [] operator anywhere in an expression:

count[0] = 7;

count[1] = count[0] * 2;

count[2]++;

count[3] -= 60;

All of these are legal assignment statements. Here is the effect of this code
fragment:

count

0 1 2 3

7 14 1 −60

By now you should have noticed that the four elements of this array are num-
bered from 0 to 3, which means that there is no element with the index 4.
This should sound familiar, since we saw the same thing with String indices.
Nevertheless, it is a common error to go beyond the bounds of an array, which
will cause an ArrayOutOfBoundsException. As with all exceptions, you get an
error message and the program quits.

You can use any expression as an index, as long as it has type int. One of the
most common ways to index an array is with a loop variable. For example:

int i = 0;

while (i < 4) {

System.out.println (count[i]);

i++;

}

This is a standard while loop that counts from 0 up to 4, and when the loop
variable i is 4, the condition fails and the loop terminates. Thus, the body of
the loop is only executed when i is 0, 1, 2 and 3.

Each time through the loop we use i as an index into the array, printing the
ith element. This type of array traversal is very common. Arrays and loops go
together like fava beans and a nice Chianti.

10.2 Copying arrays

When you copy an array variable, remember that you are copying a reference
to the array. For example:

double[] a = new double [3];

double[] b = a;

This code creates one array of three doubles, and sets two different variables to
refer to it. This situation is a form of aliasing.

0 1 2

0.0 0.0 0.0

a

b

10.3 for loops 101

Any changes in either array will be reflected in the other. This is not usually the
behavior you want; instead, you should make a copy of the array, by allocating
a new array and copying each element from one to the other.

double[] b = new double [3];

int i = 0;

while (i < 4) {

b[i] = a[i];

i++;

}

10.3 for loops

The loops we have written so far have a number of elements in common. All of
them start by initializing a variable; they have a test, or condition, that depends
on that variable; and inside the loop they do something to that variable, like
increment it.

This type of loop is so common that there is an alternate loop statement, called
for, that expresses it more concisely. The general syntax looks like this:

for (INITIALIZER; CONDITION; INCREMENTOR) {

BODY

}

This statement is exactly equivalent to

INITIALIZER;

while (CONDITION) {

BODY

INCREMENTOR

}

except that it is more concise and, since it puts all the loop-related statements
in one place, it is easier to read. For example:

for (int i = 0; i < 4; i++) {

System.out.println (count[i]);

}

is equivalent to

int i = 0;

while (i < 4) {

System.out.println (count[i]);

i++;

}

As an exercise, write a for loop to copy the elements of an array.

102 Arrays

10.4 Arrays and objects

In many ways, arrays behave like objects:

• When you declare an array variable, you get a reference to an array.

• You have to use the new command to create the array itself.

• When you pass an array as an argument, you pass a reference, which
means that the invoked method can change the contents of the array.

Some of the objects we have looked at, like Rectangles, are similar to arrays,
in the sense that they are named collection of values. This raises the question,
“How is an array of 4 integers different from a Rectangle object?”

If you go back to the definition of “array” at the beginning of the chapter, you
will see one difference, which is that the elements of an array are identified by
indices, whereas the elements (instance variables) of an object have names (like
x, width, etc.).

Another difference between arrays and objects is that all the elements of an
array have to be the same type. Although that is also true of Rectangles, we
have seen other objects that have instance variables with different types (like
Time).

10.5 Array length

Actually, arrays do have one named instance variable: length. Not surprisingly,
it contains the length of the array (number of elements). It is a good idea to
use this value as the upper bound of a loop, rather than a constant value. That
way, if the size of the array changes, you won’t have to go through the program
changing all the loops; they will work correctly for any size array.

for (int i = 0; i < a.length; i++) {

b[i] = a[i];

}

The last time the body of the loop gets executed, i is a.length - 1, which
is the index of the last element. When i is equal to a.length, the condition
fails and the body is not executed, which is a good thing, since it would cause
an exception. This code assumes that the array b contains at least as many
elements as a.

As an exercise, write a method called cloneArray that takes an array of integers
as a parameter, creates a new array that is the same size, copies the elements
from the first array into the new one, and then returns a reference to the new
array.

10.6 Random numbers 103

10.6 Random numbers

Most computer programs do the same thing every time they are executed, so
they are said to be deterministic. Usually, determinism is a good thing, since
we expect the same calculation to yield the same result. For some applications,
though, we would like the computer to be unpredictable. Games are an obvious
example, but there are many more.

Making a program truly nondeterministic turns out to be not so easy, but
there are ways to make it at least seem nondeterministic. One of them is to gen-
erate random numbers and use them to determine the outcome of the program.
Java provides a built-in method that generates pseudorandom numbers, which
are not truly random in the mathematical sense, but for our purposes, they will
do.

Check out the documentation of the random method in the Math class. The
return value is a double between 0.0 and 1.0. Each time you invoke random you
get a different randomly-generated number. To see a sample, run this loop:

for (int i = 0; i < 10; i++) {

double x = Math.random ();

System.out.println (x);

}

To generate a random double between 0.0 and an upper bound like high, you
can multiply x by high. How would you generate a random number between
low and high? How would you generate a random integer?

10.7 Statistics

The numbers generated by random are supposed to be distributed uniformly. If
you have taken statistics, you know what that means. Among other things, it
means that if we divide the range of possible values into equal sized “buckets,”
and count the number of times a random value falls in each bucket, each bucket
should get the same number of hits (eventually).

In the next few sections, we will write programs that generate a sequence of
random numbers and check whether this property holds true.

10.8 Array of random numbers

The first step is to generate a large number of random values and store them
in an array. By “large number,” of course, I mean 8. It’s always a good idea to
start with a manageable number, to help with debugging, and then increase it
later.

The following method takes a single argument, the size of the array. It allocates
a new array of doubles, fills it with random values, and returns a reference to
the new array.

104 Arrays

public static double[] randomArray (int n) {

double[] a = new double[n];

for (int i = 0; i<a.length; i++) {

a[i] = Math.random ();

}

return a;

}

The return type is double[], which means that this method returns an array
of doubles. To test this method, it is convenient to have a method that prints
the contents of an array.

public static void printArray (double[] a) {

for (int i = 0; i<a.length; i++) {

System.out.println (a[i]);

}

}

The following code generates an array and prints it:

int numValues = 8;

double[] array = randomArray (numValues);

printArray (array);

On my machine the output is

0.7344558779885422

0.6224282219647016

0.09591424515329172

0.2992298398883563

0.7736458103088713

0.7069110192991597

0.7042440765950522

0.977839532249852

which is pretty random-looking. Your results may differ.

If these numbers are really random, we expect half of them to be greater than
0.5 and half to be less. In fact, six are greater than 0.5, so that’s a little high.

If we divide the range into four buckets—from 0.0 to 0.25, 0.25 to 0.5, 0.5 to
0.75, and 0.75 to 1.0—we expect 2 values to fall in each bucket. In fact, we get
1, 1, 4, 2. Again, not exactly what we expected.

Do these results mean the values are not really random? It’s hard to tell. With
so few values, the chances are slim that we would get exactly what we expect.
But as the number of values increases, the outcome should be more predictable.

To test this theory, we’ll write some programs that divide the range into buckets
and count the number of values in each.

10.9 Counting

A good approach to problems like this is to think of simple methods that are
easy to write, and that might turn out to be useful. Then you can combine them

10.10 Many buckets 105

into a solution. Of course, it is not easy to know ahead of time which methods
are likely to be useful, but as you gain experience you will have a better idea.

Also, it is not always obvious what sort of things are easy to write, but a good
approach is to look for subproblems that fit a pattern you have seen before.

Back in Section 7.7 we looked at a loop that traversed a string and counted the
number of times a given letter appeared. You can think of this program as an
example of a pattern called “traverse and count.” The elements of this pattern
are:

• A set or container that can be traversed, like an array or a string.

• A test that you can apply to each element in the container.

• A counter that keeps track of how many elements pass the test.

In this case, I have a method in mind called inBucket that counts the number
of elements in an array that fall in a given bucket. The parameters are the array
and two doubles that specify the lower and upper bounds of the bucket.

public static int inBucket (double[] a, double low, double high) {

int count = 0;

for (int i=0; i<a.length; i++) {

if (a[i] >= low && a[i] < high) count++;

}

return count;

}

I haven’t been very careful about whether something equal to low or high falls
in the bucket, but you can see from the code that low is in and high is out.
That should prevent me from counting any elements twice.

Now, to divide the range into two pieces, we could write

int low = inBucket (a, 0.0, 0.5);

int high = inBucket (a, 0.5, 1.0);

To divide it into four pieces:

int bucket1 = inBucket (a, 0.0, 0.25);

int bucket2 = inBucket (a, 0.25, 0.5);

int bucket3 = inBucket (a, 0.5, 0.75);

int bucket4 = inBucket (a, 0.75, 1.0);

You might want to try out this program using a larger numValues. As
numValues increases, are the numbers in each bucket levelling off?

10.10 Many buckets

Of course, as the number of buckets increases, we don’t want to have to rewrite
the program, especially since the code is getting big and repetitive. Any time

106 Arrays

you find yourself doing something more than a few times, you should be looking
for a way to automate it.

Let’s say that we wanted 8 buckets. The width of each bucket would be one
eighth of the range, which is 0.125. To count the number of values in each
bucket, we need to be able to generate the bounds of each bucket automatically,
and we need to have some place to store the 8 counts.

We can solve the first problem with a loop:

int numBuckets = 8;

double bucketWidth = 1.0 / numBuckets;

for (int i = 0; i < numBuckets; i++) {

double low = i * bucketWidth;

double high = low + bucketWidth;

System.out.println (low + " to " + high);

}

This code uses the loop variable i to multiply by the bucket width, in order to
find the low end of each bucket. The output of this loop is:

0.0 to 0.125

0.125 to 0.25

0.25 to 0.375

0.375 to 0.5

0.5 to 0.625

0.625 to 0.75

0.75 to 0.875

0.875 to 1.0

You can confirm that each bucket is the same width, that they don’t overlap,
and that they cover the whole range from 0.0 to 1.0.

Now we just need a way to store 8 integers, preferably so we can use an index
to access each one. Immediately, you should be thinking “array!”

What we want is an array of 8 integers, which we can allocate outside the loop;
then, inside the loop, we’ll invoke inBucket and store the result:

int numBuckets = 8;

int[] buckets = new int [8];

double bucketWidth = 1.0 / numBuckets;

for (int i = 0; i<numBuckets; i++) {

double low = i * bucketWidth;

double high = low + bucketWidth;

//System.out.println (low + " to " + high);

buckets[i] = inBucket (a, low, high);

}

The tricky thing here is that I am using the loop variable as an index into the
buckets array, in addition to using it to compute the range of each bucket.

10.11 A single-pass solution 107

This code works. I cranked the number of values up to 1000 and divided the
range into 8 buckets. The output is:

129

109

142

118

131

124

121

126

which is pretty close to 125 in each bucket. At least, it’s close enough that I
can believe the random number generator is working.

10.11 A single-pass solution

Although this code works, it is not as efficient as it could be. Every time
it invokes inBucket, it traverses the entire array. As the number of buckets
increases, that gets to be a lot of traversals.

It would be better to make a single pass through the array, and for each value,
compute which bucket it falls in. Then we could increment the appropriate
counter.

In the previous section, we took an index, i, and multiplied it by the
bucketWidth in order to find the lower bound of a given bucket. Now we
want to take a value in the range 0.0 to 1.0, and find the index of the bucket
where it falls.

Since this problem is the inverse of the previous problem we might guess that we
should divide by the bucketwidth instead of multiplying. That guess is correct.

Remember that since bucketWidth = 1.0 / numBuckets, dividing by
bucketWidth is the same as multiplying by numBuckets. If we take a num-
ber in the range 0.0 to 1.0 and multiply by numBuckets, we get a number in
the range from 0.0 to numBuckets. If we round that number to the next lower
integer, we get exactly what we are looking for—the index of the appropriate
bucket.

int numBuckets = 8;

int[] buckets = new int [8];

for (int i = 0; i < numValues; i++) {

int index = (int) (a[i] * numBuckets);

buckets[index]++;

}

Here I am using a typecast to round the value down to the next integer and
convert it to type int at the same time.

108 Arrays

Is it possible for this calculation to produce an index that is out of range (either
negative or greater than a.length-1)? If so, how would you fix it?

An array like buckets, that contains counts of the number of values in each
range, is called a histogram. As an exercise, write a method called histogram

that takes an array and a number of buckets as parameters, and that returns a
histogram with the given number of buckets.

10.12 Glossary

array: A named collection of values, where all the values have the same type,
and each value is identified by an index.

collection: Any data structure that contains a set of items or elements.

element: One of the values in an array. The [] operator selects elements of
an array.

index: An integer variable or value used to indicate an element of an array.

deterministic: A program that does the same thing every time it is invoked.

pseudorandom: A sequence of numbers that appear to be random, but which
are actually the product of a deterministic computation.

histogram: An array of integers where each integer counts the number of values
that fall into a certain range.

Chapter 11

Arrays of Objects

11.1 Composition

By now we have seen several examples of composition (the ability to combine
language features in a variety of arrangements). One of the first examples we
saw was using a method invocation as part of an expression. Another example
is the nested structure of statements: you can put an if statement within a
while loop, or within another if statement, etc.

Having seen this pattern, and having learned about arrays and objects, you
should not be surprised to learn that you can have arrays of objects. In fact,
you can also have objects that contain arrays (as instance variables); you can
have arrays that contain arrays; you can have objects that contain objects, and
so on.

In the next two chapters we will look at some examples of these combinations,
using Card objects as an example.

11.2 Card objects

If you are not familiar with common playing cards, now would be a good time to
get a deck, or else this chapter might not make much sense. There are 52 cards
in a deck, each of which belongs to one of four suits and one of 13 ranks. The
suits are Spades, Hearts, Diamonds and Clubs (in descending order in Bridge).
The ranks are Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen and King. Depending
on what game you are playing, the rank of the Ace may be higher than King or
lower than 2.

If we want to define a new object to represent a playing card, it is pretty obvious
what the instance variables should be: rank and suit. It is not as obvious what
type the instance variables should be. One possibility is Strings, containing
things like "Spade" for suits and "Queen" for ranks. One problem with this

110 Arrays of Objects

implementation is that it would not be easy to compare cards to see which had
higher rank or suit.

An alternative is to use integers to encode the ranks and suits. By “encode,”
I do not mean what some people think, which is to encrypt, or translate into
a secret code. What a computer scientist means by “encode” is something like
“define a mapping between a sequence of numbers and the things I want to
represent.” For example,

Hearts 7→ 2
Diamonds 7→ 1
Clubs 7→ 0

The obvious feature of this mapping is that the suits map to integers in order,
so we can compare suits by comparing integers. The mapping for ranks is fairly
obvious; each of the numerical ranks maps to the corresponding integer, and for
face cards:

Queen 7→ 12
King 7→ 13

that they are not part of the Java program. They are part of the program
design, but they never appear explicitly in the code. The class definition for the
Card type looks like this:

class Card

{

int suit, rank;

public Card () {

this.suit = 0; this.rank = 0;

}

public Card (int suit, int rank) {

this.suit = suit; this.rank = rank;

}

}

As usual, I am providing two constructors, one of which takes a parameter for
each instance variable and the other of which takes no parameters.

To create an object that represents the 3 of Clubs, we would use the new com-
mand:

Card threeOfClubs = new Card (0, 3);

The first argument, 0 represents the suit Clubs.

11.3 The printCard method 111

11.3 The printCard method

When you create a new class, the first step is usually to declare the instance
variables and write constructors. The second step is often to write the standard
methods that every object should have, including one that prints the object,
and one or two that compare objects. I will start with printCard.

In order to print Card objects in a way that humans can read easily, we want to
map the integer codes onto words. A natural way to do that is with an array of
Strings. You can create an array of Strings the same way you create an array
of primitive types:

String[] suits = new String [4];

Then we can set the values of the elements of the array.

suits[0] = "Clubs";

suits[1] = "Diamonds";

suits[2] = "Hearts";

suits[3] = "Spades";

Creating an array and initializing the elements is such a common operation that
Java provides a special syntax for it:

String[] suits = { "Clubs", "Diamonds", "Hearts", "Spades" };

The effect of this statement is identical to that of the separate declaration,
allocation, and assignment. A state diagram of this array might look like:

"Spades"

"Clubs"

"Diamonds"

"Hearts"

suits

The elements of the array are references to the Strings, rather than Strings
themselves. This is true of all arrays of objects, as I will discuss in more detail
later. For now, all we need is another array of Strings to decode the ranks:

String[] ranks = { "narf", "Ace", "2", "3", "4", "5", "6",

"7", "8", "9", "10", "Jack", "Queen", "King" };

The reason for the "narf" is to act as a place-keeper for the zeroeth element of
the array, which will never be used. The only valid ranks are 1–13. This wasted
entry is not necessary, of course. We could have started at 0, as usual, but it is
best to encode 2 as 2, and 3 as 3, etc.

Using these arrays, we can select the appropriate Strings by using the suit

and rank as indices. In the method printCard,

public static void printCard (Card c) {

String[] suits = { "Clubs", "Diamonds", "Hearts", "Spades" };

String[] ranks = { "narf", "Ace", "2", "3", "4", "5", "6",

"7", "8", "9", "10", "Jack", "Queen", "King" };

System.out.println (ranks[c.rank] + " of " + suits[c.suit]);

}

112 Arrays of Objects

the expression suits[c.suit] means “use the instance variable suit from the
object c as an index into the array named suits, and select the appropriate
string.” The output of this code

Card card = new Card (1, 11);

printCard (card);

is Jack of Diamonds.

11.4 The sameCard method

The word “same” is one of those things that occur in natural language that
seem perfectly clear until you give it some thought, and then you realize there
is more to it than you expected.

For example, if I say “Chris and I have the same car,” I mean that his car and
mine are the same make and model, but they are two different cars. If I say
“Chris and I have the same mother,” I mean that his mother and mine are one
and the same. So the idea of “sameness” is different depending on the context.

When you talk about objects, there is a similar ambiguity. For example, if two
Cards are the same, does that mean they contain the same data (rank and suit),
or they are actually the same Card object?

To see if two references refer to the same object, we can use the == operator.
For example:

Card card1 = new Card (1, 11);

Card card2 = card1;

if (card1 == card2) {

System.out.println ("card1 and card2 are the same object.");

}

This type of equality is called shallow equality because it only compares the
references, not the contents of the objects.

To compare the contents of the objects—deep equality—it is common to write
a method with a name like sameCard.

public static boolean sameCard (Card c1, Card c2) {

return (c1.suit == c2.suit && c1.rank == c2.rank);

}

Now if we create two different objects that contain the same data, we can use
sameCard to see if they represent the same card:

Card card1 = new Card (1, 11);

Card card2 = new Card (1, 11);

if (sameCard (card1, card2)) {

System.out.println ("card1 and card2 are the same card.");

}

11.5 The compareCard method 113

In this case, card1 and card2 are two different objects that contain the same
data

11

1suit

rank

card1

11

1suit

rank

card2

so the condition is true. What does the state diagram look like when card1 ==

card2 is true?

In Section 7.11 I said that you should never use the == operator on Strings
because it does not do what you expect. Instead of comparing the contents of
the String (deep equality), it checks whether the two Strings are the same
object (shallow equality).

11.5 The compareCard method

For primitive types, there are conditional operators that compare values and
determine when one is greater or less than another. These operators (< and
> and the others) don’t work for object types. For Strings there is a built-in
compareTo method. For Cards we have to write our own, which we will call
compareCard. Later, we will use this method to sort a deck of cards.

Some sets are completely ordered, which means that you can compare any two
elements and tell which is bigger. For example, the integers and the floating-
point numbers are totally ordered. Some sets are unordered, which means that
there is no meaningful way to say that one element is bigger than another. For
example, the fruits are unordered, which is why we cannot compare apples and
oranges. In Java, the boolean type is unordered; we cannot say that true is
greater than false.

The set of playing cards is partially ordered, which means that sometimes we
can compare cards and sometimes not. For example, I know that the 3 of Clubs
is higher than the 2 of Clubs, and the 3 of Diamonds is higher than the 3 of
Clubs. But which is better, the 3 of Clubs or the 2 of Diamonds? One has a
higher rank, but the other has a higher suit.

In order to make cards comparable, we have to decide which is more important,
rank or suit. To be honest, the choice is completely arbitrary. For the sake of
choosing, I will say that suit is more important, because when you buy a new
deck of cards, it comes sorted with all the Clubs together, followed by all the
Diamonds, and so on.

With that decided, we can write compareCard. It will take two Cards as pa-
rameters and return 1 if the first card wins, -1 if the second card wins, and 0

114 Arrays of Objects

if they tie (indicating deep equality). It is sometimes confusing to keep those
return values straight, but they are pretty standard for comparison methods.

First we compare the suits:

if (c1.suit > c2.suit) return 1;

if (c1.suit < c2.suit) return -1;

If neither statement is true, then the suits must be equal, and we have to
compare ranks:

if (c1.rank > c2.rank) return 1;

if (c1.rank < c2.rank) return -1;

If neither of these is true, the ranks must be equal, so we return 0. In this
ordering, aces will appear lower than deuces (2s).

As an exercise, fix it so that aces are ranked higher than Kings, and encapsulate
this code in a method.

11.6 Arrays of cards

The reason I chose Cards as the objects for this chapter is that there is an
obvious use for an array of cards—a deck. Here is some code that creates a new
deck of 52 cards:

Card[] deck = new Card [52];

Here is the state diagram for this object:

deck

1 2 3 510

The important thing to see here is that the array contains only references to
objects; it does not contain any Card objects. The values of the array elements
are initialized to null. You can access the elements of the array in the usual
way:

if (deck[3] == null) {

System.out.println ("No cards yet!");

}

But if you try to access the instance variables of the non-existent Cards, you
will get a NullPointerException.

deck[2].rank; // NullPointerException

Nevertheless, that is the correct syntax for accessing the rank of the “twoeth”
card in the deck (really the third—we started at zero, remember?). This is
another example of composition, the combination of the syntax for accessing an
element of an array and an instance variable of an object.

The easiest way to populate the deck with Card objects is to write a nested
loop:

11.7 The printDeck method 115

int index = 0;

for (int suit = 0; suit <= 3; suit++) {

for (int rank = 1; rank <= 13; rank++) {

deck[index] = new Card (suit, rank);

index++;

}

}

The outer loop enumerates the suits, from 0 to 3. For each suit, the inner loop
enumerates the ranks, from 1 to 13. Since the outer loop iterates 4 times, and
the inner loop iterates 13 times, the total number of times the body is executed
is 52 (13 times 4).

I used the variable index to keep track of where in the deck the next card should
go. The following state diagram shows what the deck looks like after the first
two cards have been allocated:

2

0suit

rank1

0suit

rank

deck

1 2 3 510

As an exercise, encapsulate this deck-building code in a method called
buildDeck that takes no parameters and that returns a fully-populated array
of Cards.

11.7 The printDeck method

Whenever you are working with arrays, it is convenient to have a method that
will print the contents of the array. We have seen the pattern for traversing an
array several times, so the following method should be familiar:

public static void printDeck (Card[] deck) {

for (int i=0; i<deck.length; i++) {

printCard (deck[i]);

}

}

Since deck has type Card[], an element of deck has type Card. Therefore,
deck[i] is a legal argument for printCard.

116 Arrays of Objects

11.8 Searching

The next method I want to write is findCard, which searches through an array
of Cards to see whether it contains a certain card. It may not be obvious why
this method would be useful, but it gives me a chance to demonstrate two ways
to go searching for things, a linear search and a bisection search.

Linear search is the more obvious of the two; it involves traversing the deck and
comparing each card to the one we are looking for. If we find it we return the
index where the card appears. If it is not in the deck, we return -1.

public static int findCard (Card[] deck, Card card) {

for (int i = 0; i< deck.length; i++) {

if (sameCard (deck[i], card)) return i;

}

return -1;

}

The arguments of findCard are named card and deck. It might seem odd to
have a variable with the same name as a type (the card variable has type Card).
This is legal and common, although it can sometimes make code hard to read.
In this case, though, I think it works.

The method returns as soon as it discovers the card, which means that we do
not have to traverse the entire deck if we find the card we are looking for. If the
loop terminates without finding the card, we know the card is not in the deck
and return -1.

If the cards in the deck are not in order, there is no way to search that is faster
than this. We have to look at every card, since otherwise there is no way to be
certain the card we want is not there.

But when you look for a word in a dictionary, you don’t search linearly through
every word. The reason is that the words are in alphabetical order. As a result,
you probably use an algorithm that is similar to a bisection search:

1. Start in the middle somewhere.

2. Choose a word on the page and compare it to the word you are looking
for.

3. If you found the word you are looking for, stop.

4. If the word you are looking for comes after the word on the page, flip to
somewhere later in the dictionary and go to step 2.

5. If the word you are looking for comes before the word on the page, flip to
somewhere earlier in the dictionary and go to step 2.

If you ever get to the point where there are two adjacent words on the page and
your word comes between them, you can conclude that your word is not in the
dictionary. The only alternative is that your word has been misfiled somewhere,
but that contradicts our assumption that the words are in alphabetical order.

11.8 Searching 117

In the case of a deck of cards, if we know that the cards are in order, we
can write a version of findCard that is much faster. The best way to write a
bisection search is with a recursive method. That’s because bisection is naturally
recursive.

The trick is to write a method called findBisect that takes two indices as
parameters, low and high, indicating the segment of the array that should be
searched (including both low and high).

1. To search the array, choose an index between low and high (call it mid)
and compare it to the card you are looking for.

2. If you found it, stop.

3. If the card at mid is higher than your card, search in the range from low

to mid-1.

4. If the card at mid is lower than your card, search in the range from mid+1

to high.

Steps 3 and 4 look suspiciously like recursive invocations. Here’s what this all
looks like translated into Java code:

public static int findBisect (Card[] deck, Card card, int low, int high) {

int mid = (high + low) / 2;

int comp = compareCard (deck[mid], card);

if (comp == 0) {

return mid;

} else if (comp > 0) {

return findBisect (deck, card, low, mid-1);

} else {

return findBisect (deck, card, mid+1, high);

}

}

Rather than call compareCard three times, I called it once and stored the result.

Although this code contains the kernel of a bisection search, it is still missing
a piece. As it is currently written, if the card is not in the deck, it will recurse
forever. We need a way to detect this condition and deal with it properly (by
returning -1).

The easiest way to tell that your card is not in the deck is if there are no cards
in the deck, which is the case if high is less than low. Well, there are still cards
in the deck, of course, but what I mean is that there are no cards in the segment
of the deck indicated by low and high.

With that line added, the method works correctly:

public static int findBisect

(Card[] deck, Card card, int low, int high) {

118 Arrays of Objects

System.out.println (low + ", " + high);

if (high < low) return -1;

int mid = (high + low) / 2;

int comp = deck[mid].compareCard (card);

if (comp == 0) {

return mid;

} else if (comp > 0) {

return findBisect (deck, card, low, mid-1);

} else {

return findBisect (deck, card, mid+1, high);

}

}

I added a print statement at the beginning so I could watch the sequence of
recursive calls and convince myself that it would eventually reach the base case.
I tried out the following code:

Card card1 = new Card (1, 11);

System.out.println (findBisect (deck, card1, 0, 51));

And got the following output:

0, 51

0, 24

13, 24

19, 24

22, 24

23

Then I made up a card that is not in the deck (the 15 of Diamonds), and tried
to find it. I got the following:

0, 51

0, 24

13, 24

13, 17

13, 14

13, 12

-1

These tests don’t prove that this program is correct. In fact, no amount of
testing can prove that a program is correct. On the other hand, by looking at
a few cases and examining the code, you might be able to convince yourself.

The number of recursive calls is fairly small, typically 6 or 7. That means we
only had to invoke compareCard 6 or 7 times, compared to up to 52 times if
we did a linear search. In general, bisection is much faster than a linear search,
especially for large arrays.

Two common errors in recusive programs are forgetting to include a base case
and writing the recursive call so that the base case is never reached. Either

11.9 Decks and subdecks 119

error will cause an infinite recursion, in which case Java will (eventually) throw
a StackOverflowException.

11.9 Decks and subdecks

Looking at the interface to findBisect

public static int findBisect

(Card[] deck, Card card, int low, int high)

it might make sense to treat three of the parameters, deck, low and high, as a
single parameter that specifies a subdeck. We took a similar view in Section 4.8
when we were talking about bounding boxes. In that case I referred to x, y,
width and height as if they were a single parameter, a bounding box.

This kind of thing is quite common, and I sometimes think of it as an abstract
parameter. What I mean by “abstract,” is something that is not literally part
of the program text, but which describes the function of the program at a higher
level.

For example, when you invoke a method and pass an array and the bounds low
and high, there is nothing that prevents the invoked method from accessing
parts of the array that are out of bounds. So you are not literally sending
a subset of the deck; you are really sending the whole deck. But as long as
the recipient plays by the rules, it makes sense to think of it, abstractly, as a
subdeck.

There is one other example of this kind of abstraction that you might have
noticed in Section 9.7, when I referred to an “empty” data structure. The
reason I put “empty” in quotation marks was to suggest that it is not literally
accurate. All variables have values all the time. When you create them, they
are given default values. So there is no such thing as an empty object.

But if the program guarantees that the current value of a variable is never read
before it is written, then the current value is irrelevant. Abstractly, it makes
sense to think of such a variable as “empty.”

This kind of thinking, in which a program comes to take on meaning beyond
what is literally encoded, is a very important part of thinking like a computer
scientist. Sometimes, the word “abstract” gets used so often and in so many
contexts that it comes to lose its meaning. Nevertheless, abstraction is a central
idea in computer science (as well as many other fields).

A more general definition of “abstraction” is “The process of modeling a complex
system with a simplified description in order to suppress unnecessary details
while capturing relevant behavior.”

11.10 Glossary

encode: To represent one set of values using another set of values, by con-
structing a mapping between them.

120 Arrays of Objects

shallow equality: Equality of references. Two references that point to the
same object.

deep equality: Equality of values. Two references that point to objects that
have the same value.

abstract parameter: A set of parameters that act together as a single param-
eter.

abstraction: The process of interpreting a program (or anything else) at a
higher level than what is literally represented by the code.

Chapter 12

Objects of Arrays

In the previous chapter, we worked with an array of objects, but I also men-
tioned that it is possible to have an object that contains an array as an instance
variable. In this chapter I am going to create a new object, called a Deck, that
contains an array of Cards as an instance variable.

The class definition looks like this

class Deck {

Card[] cards;

public Deck (int n) {

cards = new Card[n];

}

}

The name of the instance variable is cards to help distinguish the Deck object
from the array of Cards that it contains. Here is a state diagram showing what
a Deck object looks like with no cards allocated:

cardsdeck

As usual, the constructor initializes the instance variable, but in this case it
uses the new command to create the array of cards. It doesn’t create any cards
to go in it, though. For that we could write another constructor that creates a
standard 52-card deck and populates it with Card objects:

public Deck () {

cards = new Card[52];

int index = 0;

for (int suit = 0; suit <= 3; suit++) {

for (int rank = 1; rank <= 13; rank++) {

cards[index] = new Card (suit, rank);

122 Objects of Arrays

index++;

}

}

}

Notice how similar this method is to buildDeck, except that we had to change
the syntax to make it a constructor. To invoke it, we use the new command:

Deck deck = new Deck ();

Now that we have a Deck class, it makes sense to put all the methods that
pertain to Decks in the Deck class definition. Looking at the methods we have
written so far, one obvious candidate is printDeck (Section 11.7). Here’s how
it looks, rewritten to work with a Deck object:

public static void printDeck (Deck deck) {

for (int i=0; i<deck.cards.length; i++) {

Card.printCard (deck.cards[i]);

}

}

The most obvious thing we have to change is the type of the parameter, from
Card[] to Deck. The second change is that we can no longer use deck.length

to get the length of the array, because deck is a Deck object now, not an array.
It contains an array, but it is not, itself, an array. Therefore, we have to write
deck.cards.length to extract the array from the Deck object and get the
length of the array.

For the same reason, we have to use deck.cards[i] to access an element of
the array, rather than just deck[i]. The last change is that the invocation of
printCard has to say explicitly that printCard is defined in the Card class.

For some of the other methods, it is not obvious whether they should be included
in the Card class or the Deck class. For example, findCard takes a Card and a
Deck as arguments; you could reasonably put it in either class. As an exercise,
move findCard into the Deck class and rewrite it so that the first parameter is
a Deck object rather than an array of Cards.

12.1 Shuffling

For most card games you need to be able to shuffle the deck; that is, put the
cards in a random order. In Section 10.6 we saw how to generate random
numbers, but it is not obvious how to use them to shuffle a deck.

One possibility is to model the way humans shuffle, which is usually by dividing
the deck in two and then reassembling the deck by choosing alternately from
each deck. Since humans usually don’t shuffle perfectly, after about 7 iterations
the order of the deck is pretty well randomized. But a computer program would
have the annoying property of doing a perfect shuffle every time, which is not
really very random. In fact, after 8 perfect shuffles, you would find the deck
back in the same order you started in. For a discussion of that claim, see

12.2 Sorting 123

http://www.wiskit.com/marilyn/craig.html or do a web search with the
keywords “perfect shuffle.”

A better shuffling algorithm is to traverse the deck one card at a time, and at
each iteration choose two cards and swap them.

Here is an outline of how this algorithm works. To sketch the program, I am
using a combination of Java statements and English words that is sometimes
called pseudocode:

for (int i=0; i<deck.cards.length; i++) {

// choose a random number between i and deck.cards.length

// swap the ith card and the randomly-chosen card

}

The nice thing about using pseudocode is that it often makes it clear what
methods you are going to need. In this case, we need something like randomInt,
which chooses a random integer between the parameters low and high, and
swapCards which takes two indices and switches the cards at the indicated
positions.

You can probably figure out how to write randomInt by looking at Section 10.6,
although you will have to be careful about possibly generating indices that are
out of range.

You can also figure out swapCards yourself. The only tricky thing is to decide
whether to swap just the references to the cards or the contents of the cards.
Does it matter which one you choose? Which is faster?

I will leave the remaining implementation of these methods as an exercise to
the reader.

12.2 Sorting

Now that we have messed up the deck, we need a way to put it back in order.
Ironically, there is an algorithm for sorting that is very similar to the algorithm
for shuffling. This algorithm is sometimes called selection sort because it
works by traversing the array repeatedly and selecting the lowest remaining
card each time.

During the first iteration we find the lowest card and swap it with the card in
the 0th position. During the ith, we find the lowest card to the right of i and
swap it with the ith card.

Here is pseudocode for selection sort:

for (int i=0; i<deck.cards.length; i++) {

// find the lowest card at or to the right of i

// swap the ith card and the lowest card

}

124 Objects of Arrays

Again, the pseudocode helps with the design of the helper methods. In
this case we can use swapCards again, so we only need one new one, called
findLowestCard, that takes an array of cards and an index where it should
start looking.

Once again, I am going to leave the implementation up to the reader.

12.3 Subdecks

How should we represent a hand or some other subset of a full deck? One good
choice is to make a Deck object that has fewer than 52 cards.

We might want a method, subdeck, that takes an array of cards and a range of
indices, and that returns a new array of cards that contains the specified subset
of the deck:

public static Deck subdeck (Deck deck, int low, int high) {

Deck sub = new Deck (high-low+1);

for (int i = 0; i<sub.cards.length; i++) {

sub.cards[i] = deck.cards[low+i];

}

return sub;

}

The length of the subdeck is high-low+1 because both the low card and high
card are included. This sort of computation can be confusing, and lead to
“off-by-one” errors. Drawing a picture is usually the best way to avoid them.

Because we provide an argument with the new command, the contructor that
gets invoked will be the first one, which only allocates the array and doesn’t
allocate any cards. Inside the for loop, the subdeck gets populated with copies
of the references from the deck.

The following is a state diagram of a subdeck being created with the parameters
low=3 and high=7. The result is a hand with 5 cards that are shared with the
original deck; i.e. they are aliased.

deck cards

sub cards

12.4 Shuffling and dealing 125

I have suggested that aliasing is not generally a good idea, since changes in one
subdeck will be reflected in others, which is not the behavior you would expect
from real cards and decks. But if the objects in question are immutable, then
aliasing can be a reasonable choice. In this case, there is probably no reason
ever to change the rank or suit of a card. Instead we will create each card once
and then treat it as an immutable object. So for Cards aliasing is a reasonable
choice.

As an exercise, write a version of findBisect that takes a subdeck as an argu-
ment, rather than a deck and an index range. Which version is more error-prone?
Which version do you think is more efficient?

12.4 Shuffling and dealing

In Section 12.1 I wrote pseudocode for a shuffling algorithm. Assuming that
we have a method called shuffleDeck that takes a deck as an argument and
shuffles it, we can create and shuffle a deck:

Deck deck = new Deck ();

shuffleDeck (deck);

Then, to deal out several hands, we can use subdeck:

Deck hand1 = subdeck (deck, 0, 4);

Deck hand2 = subdeck (deck, 5, 9);

Deck pack = subdeck (deck, 10, 51);

This code puts the first 5 cards in one hand, the next 5 cards in the other, and
the rest into the pack.

When you thought about dealing, did you think we should give out one card at a
time to each player in the round-robin style that is common in real card games?
I thought about it, but then realized that it is unnecessary for a computer
program. The round-robin convention is intended to mitigate imperfect shuffling
and make it more difficult for the dealer to cheat. Neither of these is an issue
for a computer.

This example is a useful reminder of one of the dangers of engineering metaphors:
sometimes we impose restrictions on computers that are unnecessary, or expect
capabilities that are lacking, because we unthinkingly extend a metaphor past
its breaking point. Beware of misleading analogies.

12.5 Mergesort

In Section 12.2, we saw a simple sorting algorithm that turns out not to be very
efficient. In order to sort n items, it has to traverse the array n times, and each
traversal takes an amount of time that is proportional to n. The total time,
therefore, is proportional to n2.

126 Objects of Arrays

In this section I will sketch a more efficient algorithm called mergesort. To
sort n items, mergesort takes time proportional to n log n. That may not seem
impressive, but as n gets big, the difference between n2 and n log n can be
enormous. Try out a few values of n and see.

The basic idea behind mergesort is this: if you have two subdecks, each of which
has been sorted, it is easy (and fast) to merge them into a single, sorted deck.
Try this out with a deck of cards:

1. Form two subdecks with about 10 cards each and sort them so that when
they are face up the lowest cards are on top. Place both decks face up in
front of you.

2. Compare the top card from each deck and choose the lower one. Flip it
over and add it to the merged deck.

3. Repeat step two until one of the decks is empty. Then take the remaining
cards and add them to the merged deck.

The result should be a single sorted deck. Here’s what this looks like in pseu-
docode:

public static Deck merge (Deck d1, Deck d2) {

// create a new deck big enough for all the cards

Deck result = new Deck (d1.cards.length + d2.cards.length);

// use the index i to keep track of where we are in

// the first deck, and the index j for the second deck

int i = 0;

int j = 0;

// the index k traverses the result deck

for (int k = 0; k<result.cards.length; k++) {

// if d1 is empty, d2 wins; if d2 is empty, d1 wins;

// otherwise, compare the two cards

// add the winner to the new deck

}

return result;

}

The best way to test merge is to build and shuffle a deck, use subdeck to form
two (small) hands, and then use the sort routine from the previous chapter to
sort the two halves. Then you can pass the two halves to merge to see if it
works.

If you can get that working, try a simple implementation of mergeSort:

public static Deck mergeSort (Deck deck) {

// find the midpoint of the deck

12.6 Glossary 127

// divide the deck into two subdecks

// sort the subdecks using sortDeck

// merge the two halves and return the result

}

Then, if you get that working, the real fun begins! The magical thing about
mergesort is that it is recursive. At the point where you sort the subdecks, why
should you invoke the old, slow version of sort? Why not invoke the spiffy new
mergeSort you are in the process of writing?

Not only is that a good idea, it is necessary in order to achieve the performance
advantage I promised. In order to make it work, though, you have to add a
base case so that it doesn’t recurse forever. A simple base case is a subdeck
with 0 or 1 cards. If mergesort receives such a small subdeck, it can return it
unmodified, since it is already sorted.

The recursive version of mergesort should look something like this:

public static Deck mergeSort (Deck deck) {

// if the deck is 0 or 1 cards, return it

// find the midpoint of the deck

// divide the deck into two subdecks

// sort the subdecks using mergesort

// merge the two halves and return the result

}

As usual, there are two ways to think about recursive programs: you can think
through the entire flow of execution, or you can make the “leap of faith.” I
have deliberately constructed this example to encourage you to make the leap
of faith.

When you were using sortDeck to sort the subdecks, you didn’t feel compelled
to follow the flow of execution, right? You just assumed that the sortDeck

method would work because you already debugged it. Well, all you did to make
mergeSort recursive was replace one sort algorithm with another. There is no
reason to read the program differently.

Well, actually you have to give some thought to getting the base case right
and making sure that you reach it eventually, but other than that, writing the
recursive version should be no problem. Good luck!

12.6 Glossary

pseudocode: A way of designing programs by writing rough drafts in a com-
bination of English and Java.

helper method: Often a small method that does not do anything enormously
useful by itself, but which helps another, more useful, method.

Chapter 13

Object-oriented

programming

13.1 Programming languages and styles

There are many programming languages in the world, and almost as many pro-
gramming styles (sometimes called paradigms). Three styles that have appeared
in this book are procedural, functional, and object-oriented. Although Java is
usually thought of as an object-oriented language, it is possible to write Java
programs in any style. The style I have demonstrated in this book is pretty
much procedural. Existing Java programs and the built-in Java packages are
written in a mixture of all three styles, but they tend to be more object-oriented
than the programs in this book.

It’s not easy to define what object-oriented programming is, but here are some
of its characteristics:

• Object definitions (classes) usually correspond to relevant real-world ob-
jects. For example, in Chapter 12, the creation of the Deck class was a
step toward object-oriented programming.

• The majority of methods are object methods (the kind you invoke on an
object) rather than class methods (the kind you just invoke). So far all
the methods we have written have been class methods. In this chapter we
will write some object methods.

• The language feature most associated with object-oriented programming
is inheritance. I will cover inheritance later in this chapter.

Recently object-oriented programming has become quite popular, and there are
people who claim that it is superior to other styles in various ways. I hope that
by exposing you to a variety of styles I have given you the tools you need to
understand and evaluate these claims.

130 Object-oriented programming

13.2 Object and class methods

There are two types of methods in Java, called class methods and object
methods. So far, every method we have written has been a class method.
Class methods are identified by the keyword static in the first line. Any
method that does not have the keyword static is an object method.

Although we have not written any object methods, we have invoked some.
Whenever you invoke a method “on” an object, it’s an object method. For
example, drawOval is an object method we invoked on g, which is a Graphics

object. Also, the methods we invoked on Strings in Chapter 7 were object
methods.

Anything that can be written as a class method can also be written as an object
method, and vice versa. Sometimes it is just more natural to use one or the
other. For reasons that will be clear soon, object methods are often shorter
than the corresponding class methods.

13.3 The current object

When you invoke a method on an object, that object becomes the current
object. Inside the method, you can refer to the instance variables of the current
object by name, without having to specify the name of the object.

Also, you can refer to the current object using the keyword this. We have
already seen this used in constructors. In fact, you can think of constructors
as being a special kind of object method.

13.4 Complex numbers

As a running example for the rest of this chapter we will consider a class def-
inition for complex numbers. Complex numbers are useful for many branches
of mathematics and engineering, and many computations are performed using
complex arithmetic. A complex number is the sum of a real part and an imagi-
nary part, and is usually written in the form x + yi, where x is the real part, y
is the imaginary part, and i represents the square root of -1. Thus, i · i = −1.

The following is a class definition for a new object type called Complex:

class Complex

{

// instance variables

double real, imag;

// constructor

public Complex () {

this.real = 0.0; this.imag = 0.0;

}

13.5 A function on Complex numbers 131

// constructor

public Complex (double real, double imag) {

this.real = real; this.imag = imag;

}

}

There should be nothing surprising here. The instance variables are two doubles
that contain the real and imaginary parts. The two constructors are the usual
kind: one takes no parameters and assigns default values to the instance vari-
ables, the other takes parameters that are identical to the instance variables.
As we have seen before, the keyword this is used to refer to the object being
initialized.

In main, or anywhere else we want to create Complex objects, we have the option
of creating the object and then setting the instance variables, or doing both at
the same time:

Complex x = new Complex ();

x.real = 1.0;

x.imag = 2.0;

Complex y = new Complex (3.0, 4.0);

13.5 A function on Complex numbers

Let’s look at some of the operations we might want to perform on complex
numbers. The absolute value of a complex number is defined to be

√

x2 + y2.
The abs method is a pure function that computes the absolute value. Written
as a class method, it looks like this:

// class method

public static double abs (Complex c) {

return Math.sqrt (c.real * c.real + c.imag * c.imag);

}

This version of abs calculates the absolute value of c, the Complex object it re-
ceives as a parameter. The next version of abs is an object method; it calculates
the absolute value of the current object (the object the method was invoked on).
Thus, it does not receive any parameters:

// object method

public double abs () {

return Math.sqrt (real*real + imag*imag);

}

I removed the keyword static to indicate that this is an object method. Also,
I eliminated the unnecessary parameter. Inside the method, I can refer to the
instance variables real and imag by name without having to specify an object.
Java knows implicitly that I am referring to the instance variables of the current
object. If I wanted to make it explicit, I could have used the keyword this:

132 Object-oriented programming

// object method

public double abs () {

return Math.sqrt (this.real * this.real + this.imag * this.imag);

}

But that would be longer and not really any clearer. To invoke this method, we
invoke it on an object, for example

Complex y = new Complex (3.0, 4.0);

double result = y.abs();

13.6 Another function on Complex numbers

Another operation we might want to perform on complex numbers is addition.
You can add complex numbers by adding the real parts and adding the imagi-
nary parts. Written as a class method, that looks like:

public static Complex add (Complex a, Complex b) {

return new Complex (a.real + b.real, a.imag + b.imag);

}

To invoke this method, we would pass both operands as arguments:

Complex sum = add (x, y);

Written as an object method, it would take only one argument, which it would
add to the current object:

public Complex add (Complex b) {

return new Complex (real + b.real, imag + b.imag);

}

Again, we can refer to the instance variables of the current object implicitly,
but to refer to the instance variables of b we have to name b explicitly using
dot notation. To invoke this method, you invoke it on one of the operands and
pass the other as an argument.

Complex sum = x.add (y);

From these examples you can see that the current object (this) can take the
place of one of the parameters. For this reason, the current object is sometimes
called an implicit parameter.

13.7 A modifier

As yet another example, we’ll look at conjugate, which is a modifier method
that transforms a Complex number into its complex conjugate. The complex
conjugate of x + yi is x − yi.

As a class method, this looks like:

public static void conjugate (Complex c) {

c.imag = -c.imag;

}

13.8 The toString method 133

As an object method, it looks like

public void conjugate () {

imag = -imag;

}

By now you should be getting the sense that converting a method from one kind
to another is a mechanical process. With a little practice, you will be able to
do it without giving it much thought, which is good because you should not be
constrained to writing one kind of method or the other. You should be equally
familiar with both so that you can choose whichever one seems most appropriate
for the operation you are writing.

For example, I think that add should be written as a class method because it is
a symmetric operation of two operands, and it makes sense for both operands
to appear as parameters. It just seems odd to invoke the method on one of the
operands and pass the other as an argument.

On the other hand, simple operations that apply to a single object can be written
most concisely as object methods (even if they take some additional arguments).

13.8 The toString method

There are two object methods that are common to many object types: toString
and equals. toString converts the object to some reasonable string represen-
tation that can be printed. equals is used to compare objects.

When you print an object using print or println, Java checks to see whether
you have provided an object method named toString, and if so it invokes it. If
not, it invokes a default version of toString that produces the output described
in Section 9.6.

Here is what toString might look like for the Complex class:

public String toString () {

return real + " + " + imag + "i";

}

The return type for toString is String, naturally, and it takes no parameters.
You can invoke toString in the usual way:

Complex x = new Complex (1.0, 2.0);

String s = x.toString ();

or you can invoke it indirectly through print:

System.out.println (x);

Whenever you pass an object to print or println, Java invokes the toString

method on that object and prints the result. In this case, the output is 1.0 +

2.0i.

This version of toString does not look good if the imaginary part is negative.
As an exercise, fix it.

134 Object-oriented programming

13.9 The equals method

When you use the == operator to compare two objects, what you are really
asking is, “Are these two things the same object?” That is, do both objects
refer to the same location in memory.

For many types, that is not the appropriate definition of equality. For example,
two complex numbers are equal if their real parts are equal and their imaginary
parts are equal.

When you create a new object type, you can provide your own definition of
equality by providing an object method called equals. For the Complex class,
this looks like:

public boolean equals (Complex b) {

return (real == b.real && imag == b.imag);

}

By convention, equals is always an object method. The return type has to be
boolean.

The documentation of equals in the Object class provides some guidelines you
should keep in mind when you make up your own definition of equality:

The equals method implements an equivalence relation:

• It is reflexive: for any reference value x, x.equals(x) should
return true.

• It is symmetric: for any reference values x and y, x.equals(y)
should return true if and only if y.equals(x) returns true.

• It is transitive: for any reference values x, y, and z, if
x.equals(y) returns true and y.equals(z) returns true,
then x.equals(z) should return true.

• It is consistent: for any reference values x and y, multiple invo-
cations of x.equals(y) consistently return true or consistently
return false.

• For any reference value x, x.equals(null) should return
false.

The definition of equals I provided satisfies all these conditions except one.
Which one? As an exercise, fix it.

13.10 Invoking one object method from another

As you might expect, it is legal and common to invoke one object method from
another. For example, to normalize a complex number, you divide through
(both parts) by the absolute value. It may not be obvious why this is useful,
but it is.

Let’s write the method normalize as an object method, and let’s make it a
modifier.

13.11 Oddities and errors 135

public void normalize () {

double d = this.abs();

real = real/d;

imag = imag/d;

}

The first line finds the absolute value of the current object by invoking abs on
the current object. In this case I named the current object explicitly, but I could
have left it out. If you invoke one object method within another, Java assumes
that you are invoking it on the current object.

As an exercise, rewrite normalize as a pure function. Then rewrite it as a class
method.

13.11 Oddities and errors

If you have both object methods and class methods in the same class definition,
it is easy to get confused. A common way to organize a class definition is to put
all the constructors at the beginning, followed by all the object methods and
then all the class methods.

You can have an object method and a class method with the same name, as
long as they do not have the same number and types of parameters. As with
other kinds of overloading, Java decides which version to invoke by looking at
the arguments you provide.

Now that we know what the keyword static means, you have probably figured
out that main is a class method, which means that there is no “current object”
when it is invoked.

Since there is no current object in a class method, it is an error to use the
keyword this. If you try, you might get an error message like: “Undefined
variable: this.” Also, you cannot refer to instance variables without using dot
notation and providing an object name. If you try, you might get “Can’t make
a static reference to nonstatic variable...” This is not one of the better error
messages, since it uses some non-standard language. For example, by “nonstatic
variable” it means “instance variable.” But once you know what it means, you
know what it means.

13.12 Inheritance

The language feature that is most often associated with object-oriented pro-
gramming is inheritance. Inheritance is the ability to define a new class that
is a modified version of a previously-defined class (including built-in classes).

The primary advantage of this feature is that you can add new methods or
instance variables to an existing class without modifying the existing class. This

136 Object-oriented programming

is particularly useful for built-in classes, since you can’t modify them even if you
want to.

The reason inheritance is called “inheritance” is that the new class inherits
all the instance variables and methods of the existing class. Extending this
metaphor, the existing class is sometimes called the parent class.

13.13 Drawable rectangles

An an example of inheritance, we are going to take the existing Rectangle

class and make it “drawable.” That is, we are going to create a new class called
DrawableRectangle that will have all the instance variables and methods of a
Rectangle, plus an additional method called draw that will take a Graphics

object as a parameter and draw the rectangle.

The class definition looks like this:

import java.awt.*;

class DrawableRectangle extends Rectangle {

public void draw (Graphics g) {

g.drawRect (x, y, width, height);

}

}

Yes, that’s really all there is in the whole class definition. The first line imports
the java.awt package, which is where Rectangle and Graphics are defined.

The next line indicates that DrawableRectangle inherits from Rectangle. The
keyword extends is used to identify the parent class.

The rest is the definition of the draw method, which refers to the instance vari-
ables x, y, width and height. It might seem odd to refer to instance variables
that don’t appear in this class definition, but remember that they are inherited
from the parent class.

To create and draw a DrawableRectangle, you could use the following:

public static void draw

(Graphics g, int x, int y, int width, int height) {

DrawableRectangle dr = new DrawableRectangle ();

dr.x = 10; dr.y = 10;

dr.width = 200; dr.height = 200;

dr.draw (g);

}

The parameters of draw are a Graphics object and the bounding box of the
drawing area (not the coordinates of the rectangle).

It might seem odd to use the new command for a class that has no constructors.
DrawableRectangle inherits the default constructor of its parent class, so there
is no problem there.

13.14 The class hierarchy 137

We can set the instance variables of dr and invoke methods on it in the
usual way. When we invoke draw, Java invokes the method we defined in
DrawableRectangle. If we invoked grow or some other Rectangle method
on dr, Java would know to use the method defined in the parent class.

13.14 The class hierarchy

In Java, all classes extend some other class. The most basic class is called
Object. It contains no instance variables, but it does provide the methods
equals and toString, among others.

Many classes extend Object, including almost all of the classes we have written
and many of the built-in classes, like Rectangle. Any class that does not
explicitly name a parent inherits from Object by default.

Some inheritance chains are longer, though. For example, Slate extends Frame
(see Appendix D), which extends Window, which extends Container, which
extends Component, which extends Object. No matter how long the chain,
Object is the ultimate parent of all classes.

All the classes in Java can be organized into a “family tree” that is called the
class hierarchy. Object usually appears at the top, with all the “child” classes
below. If you look at the documentation of Frame, for example, you will see the
part of the hierarchy that makes up Frame’s pedigree.

13.15 Object-oriented design

Inheritance is a powerful feature. Some programs that would be complicated
without inheritance can be written concisely and simply with it. Also, inheri-
tance can facilitate code reuse, since you can customize the behavior of build-in
classes without having to modify them.

On the other hand, inheritance can make programs difficult to read, since it is
sometimes not clear, when a method is invoked, where to find the definition. For
example, one of the methods you can invoke on a Slate is getBounds. Can you
find the documentation for getBounds? It turns out that getBounds is defined
in the parent of the parent of the parent of the parent of Slate.

Also, many of the things that can be done using inheritance can be done almost
as elegantly (or more so) without it.

13.16 Glossary

object method: A method that is invoked on an object, and that operates
on that object, which is referred to by the keyword this in Java or “the
current object” in English. Object methods do not have the keyword
static.

138 Object-oriented programming

class method: A method with the keyword static. Class methods are not
invoked on objects and they do not have a current object.

current object: The object on which an object method is invoked. Inside the
method, the current object is referred to by this.

this: The keyword that refers to the current object.

implicit: Anything that is left unsaid or implied. Within an object method,
you can refer to the instance variables implicitly (without naming the
object).

explicit: Anything that is spelled out completely. Within a class method, all
references to the instance variables have to be explicit.

Chapter 14

Linked lists

14.1 References in objects

In the last chapter we saw that the instance variables of an object can be arrays,
and I mentioned that they can be objects, too.

One of the more interesting possibilities is that an object can contain a reference
to another object of the same type. There is a common data structure, the list,
that takes advantage of this feature.

Lists are made up of nodes, where each node contains a reference to the next
node in the list. In addition, each node usually contains a unit of data called
the cargo. In our first example, the cargo will be a single integer, but later we
will write a generic list that can contain objects of any type.

14.2 The Node class

As usual when we write a new class, we’ll start with the instance variables, one
or two constructors and toString so that we can test the basic mechanism of
creating and displaying the new type.

public class Node {

int cargo;

Node next;

public Node () {

cargo = 0;

next = null;

}

public Node (int cargo, Node next) {

this.cargo = cargo;

140 Linked lists

this.next = next;

}

public String toString () {

return cargo + "";

}

}

The declarations of the instance variables follow naturally from the specification,
and the rest follows mechanically from the instance variables. The expression
cargo + "" is an awkward but concise way to convert an integer to a String.

To test the implementation so far, we would put something like this in main:

Node node = new Node (1, null);

System.out.println (node);

The result is simply

1

To make it interesting, we need a list with more than one node!

Node node1 = new Node (1, null);

Node node2 = new Node (2, null);

Node node3 = new Node (3, null);

This code creates three nodes, but we don’t have a list yet because the nodes
are not linked. The state diagram looks like this:

node1

cargo

next

1

node2

cargo

next

2

node3

cargo

next

3

To link up the nodes, we have to make the first node refer to the second and
the second node refer to the third.

node1.next = node2;

node2.next = node3;

node3.next = null;

The reference of the third node is null, which indicates that it is the end of the
list. Now the state diagram looks like:

node2

cargo

next

2

node3

cargo

next

3cargo

next

1

node1

14.3 Lists as collections 141

Now we know how to create nodes and link them into lists. What might be less
clear at this point is why.

14.3 Lists as collections

The thing that makes lists useful is that they are a way of assembling multiple
objects into a single entity, sometimes called a collection. In the example, the
first node of the list serves as a reference to the entire list.

If we want to pass the list as a parameter, all we have to pass is a reference to
the first node. For example, the method printList takes a single node as an
argument. Starting with the head of the list, it prints each node until it gets to
the end (indicated by the null reference).

public static void printList (Node list) {

Node node = list;

while (node != null) {

System.out.print (node);

node = node.next;

}

System.out.println ();

}

To invoke this method we just have to pass a reference to the first node:

printList (node1);

Inside printList we have a reference to the first node of the list, but there is
no variable that refers to the other nodes. We have to use the next value from
each node to get to the next node.

This diagram shows the value of list and the values that node takes on:

list

cargo

next

1 cargo

next

2 cargo

next

3

node

This way of moving through a list is called a traversal, just like the similar
pattern of moving through the elements of an array. It is common to use a loop
variable like node to refer to each of the nodes in the list in succession.

The output of this method is

123

142 Linked lists

By convention, lists are printed in parentheses with commas between the ele-
ments, as in (1, 2, 3). As an exercise, modify printList so that it generates
output in this format.

As another exercise, rewrite printList using a for loop instead of a while

loop.

14.4 Lists and recursion

Recursion and lists go together like fava beans and a nice Chianti. For example,
here is a recursive algorithm for printing a list backwards:

1. Separate the list into two pieces: the first node (called the head) and the
rest (called the tail).

2. Print the tail backwards.

3. Print the head.

Of course, Step 2, the recursive call, assumes that we have a way of printing
a list backwards. But if we assume that the recursive call works—the leap of
faith—then we can convince ourselves that this algorithm works.

All we need is a base case, and a way of proving that for any list we will
eventually get to the base case. A natural choice for the base case is a list with
a single element, but an even better choice is the empty list, represented by null.

public static void printBackward (Node list) {

if (list == null) return;

Node head = list;

Node tail = list.next;

printBackward (tail);

System.out.print (head);

}

The first line handles the base case by doing nothing. The next two lines split
the list into head and tail. The last two lines print the list.

We invoke this method exactly as we invoked printList:

printBackward (node1);

The result is a backwards list.

Can we prove that this method will always terminate? In other words, will it
always reach the base case? In fact, the answer is no. There are some lists that
will make this method crash.

14.5 Infinite lists 143

14.5 Infinite lists

There is nothing to prevent a node from referring back to an earlier node in the
list, including itself. For example, this figure shows a list with two nodes, one
of which refers to itself.

list

cargo

next

1 cargo

next

2

If we invoke printList on this list, it will loop forever. If we invoke
printBackward it will recurse infinitely. This sort of behavior makes infinite
lists difficult to work with.

Nevertheless, they are occasionally useful. For example, we might represent a
number as a list of digits and use an infinite list to represent a repeating fraction.

Regardless, it is problematic that we cannot prove that printList and
printBackward terminate. The best we can do is the hypothetical statement,
“If the list contains no loops, then these methods will terminate.” This sort of
claim is called a precondition. It imposes a constraint on one of the parame-
ters and describes the behavior of the method if the constraint is satisfied. We
will see more examples soon.

14.6 The fundamental ambiguity theorem

There is a part of printBackward that might have raised an eyebrow:

Node head = list;

Node tail = list.next;

After the first assignment, head and list have the same type and the same
value. So why did I create a new variable?

The reason is that the two variables play different roles. We think of head as a
reference to a single node, and we think of list as a reference to the first node
of a list. These “roles” are not part of the program; they are in the mind of the
programmer.

The second assignment creates a new reference to the second node in the list,
but in this case we think of it as a list. So, even though head and tail have
the same type, they play different roles.

This ambiguity is useful, but it can make programs with lists difficult to read.
I often use variable names like node and list to document how I intend to use
a variable, and sometimes I create additional variables to disambiguate.

144 Linked lists

I could have written printBackward without head and tail, but I think it
makes it harder to understand:

public static void printBackward (Node list) {

if (list == null) return;

printBackward (list.next);

System.out.print (list);

}

Looking at the two function calls, we have to remember that printBackward

treats its argument as a list and print treats its argument as a single object.

Always keep in mind the fundamental ambiguity theorem:

A variable that refers to a node might treat the node as a single
object or as the first in a list of nodes.

14.7 Object methods for nodes

You might have wondered why printList and printBackward are class meth-
ods. I have made the claim that anything that can be done with class methods
can also be done with object methods; it’s just a question of which form is
cleaner.

In this case there is a legitimate reason to choose class methods. It is legal to
send null as an argument to a class method, but it is not legal to invoke an
object method on a null object.

Node node = null;

printList (node); // legal

node.printList (); // NullPointerException

This limitation makes it awkward to write list-manipulating code in a clean,
object-oriented style. A little later we will see a way to get around this, though.

14.8 Modifying lists

Obviously one way to modify a list is to change the cargo of one of the nodes,
but the more interesting operations are the ones that add, remove, or reorder
the nodes.

As an example, we’ll write a method that removes the second node in the list
and returns a reference to the removed node.

public static Node removeSecond (Node list) {

Node first = list;

Node second = list.next;

14.9 Wrappers and helpers 145

// make the first node refer to the third

first.next = second.next;

// separate the second node from the rest of the list

second.next = null;

return second;

}

Again, I am using temporary variables to make the code more readable. Here
is how to use this method.

printList (node1);

Node removed = removeSecond (node1);

printList (removed);

printList (node1);

The output is

(1, 2, 3) the original list

(2) the removed node

(1, 3) the modified list

Here is a state diagram showing the effect of this operation.

first second

cargo

next

1 cargo

next

2 cargo

next

3

What happens if we invoke this method and pass a list with only one element
(a singleton)? What happens if we pass the empty list as an argument? Is
there a precondition for this method?

14.9 Wrappers and helpers

For some list operations it is useful to divide the labor into two methods.
For example, to print a list backwards in the conventional list format, (3,

2, 1) we can use the printBackwards method to print 3, 2, but we need
a separate method to print the parentheses and the first node. We’ll call it
printBackwardNicely.

public static void printBackwardNicely (Node list) {

System.out.print ("(");

if (list != null) {

Node head = list;

146 Linked lists

Node tail = list.next;

printBackward (tail);

System.out.print (head);

}

System.out.println (")");

}

Again, it is a good idea to check methods like this to see if they work with
special cases like an empty list or a singleton.

Elsewhere in the program, when we use this method, we will invoke
printBackwardNicely directly and it will invoke printBackward on our be-
half. In that sense, printBackwardNicely acts as a wrapper, and it uses
printBackward as a helper.

14.10 The LinkedList class

There are a number of subtle problems with the way we have been implementing
lists. In a reversal of cause and effect, I will propose an alternative implemen-
tation first and then explain what problems it solves.

First, we will create a new class called LinkedList. Its instance variables are
an integer that contains the length of the list and a reference to the first node
in the list. LinkedList objects serve as handles for manipulating lists of Node
objects.

public class LinkedList {

int length;

Node head;

public LinkedList () {

length = 0;

head = null;

}

}

One nice thing about the LinkedList class is that it gives us a natural place
to put wrapper functions like printBackwardNicely, which we can make an
object method in the LinkedList class.

public void printBackward () {

System.out.print ("(");

if (head != null) {

Node tail = head.next;

Node.printBackward (tail);

System.out.print (head);

}

System.out.println (")");

}

14.11 Invariants 147

Just to make things confusing, I renamed printBackwardNicely. Now there
are two methods named printBackward: one in the Node class (the helper) and
one in the LinkedList class (the wrapper). In order for the wrapper to invoke
the helper, it has to identify the class explicitly (Node.printBackward).

So, one of the benefits of the LinkedList class is that it provides a nice place
to put wrapper functions. Another is that it makes it easier to add or remove
the first element of a list. For example, addFirst is an object method for
LinkedLists; it takes an int as an argument and puts it at the beginning of
the list.

public void addFirst (int i) {

Node node = new Node (i, head);

head = node;

length++;

}

As always, to check code like this it is a good idea to think about the special
cases. For example, what happens if the list is initially empty?

14.11 Invariants

Some lists are “well-formed;” others are not. For example, if a list contains a
loop, it will cause many of our methods to crash, so we might want to require
that lists contain no loops. Another requirement is that the length value in the
LinkedList object should be equal to the actual number of nodes in the list.

Requirements like this are called invariants because, ideally, they should be
true of every object all the time. Specifying invariants for objects is a useful
programming practice because it makes it easier to prove the correctness of
code, check the integrity of data structures, and detect errors.

One thing that is sometimes confusing about invariants is that there are some
times when they are violated. For example, in the middle of addFirst, after
we have added the node, but before we have incremented length, the invariant
is violated. This kind of violation is acceptable; in fact, it is often impossible
to modify an object without violating an invariant for at least a little while.
Normally the requirement is that every method that violates an invariant must
restore the invariant.

If there is any significant stretch of code in which the invariant is violated, it
is important for the comments to make that clear, so that no operations are
performed that depend on the invariant.

14.12 Glossary

list: A data structure that implements a collection using a sequence of linked
nodes.

148 Linked lists

node: An element of a list, usually implemented as an object that contains a
reference to another object of the same type.

cargo: An item of data contained in a node.

link: An object reference embedded in an object.

generic data structure: A kind of data structure that can contain data of
any type.

precondition: An assertion that must be true in order for a method to work
correctly.

invariant: An assertion that should be true of an object at all times (except
maybe while the object is being modified).

wrapper method: A method that acts as a middle-man between a caller and
a helper method, often offering an interface that is cleaner than the helper
method’s.

Chapter 15

Stacks

15.1 Abstract data types

The data types we have looked at so far are all concrete, in the sense that we
have completely specified how they are implemented. For example, the Card

class represents a card using two integers. As I discussed at the time, that is not
the only way to represent a card; there are many alternative implementations.

An abstract data type, or ADT, specifies a set of operations (or methods)
and the semantics of the operations (what they do) but it does not specify the
implementation of the operations. That’s what makes it abstract.

Why is that useful?

• It simplifies the task of specifying an algorithm if you can denote the
operations you need without having to think at the same time about how
the operations are performed.

• Since there are usually many ways to implement an ADT, it might be
useful to write an algorithm that can be used with any of the possible
implementations.

• Well-known ADTs, like the Stack ADT in this chapter, are often imple-
mented in standard libraries so they can be written once and used by
many programmers.

• The operations on ADTs provide a common high-level language for spec-
ifying and talking about algorithms.

When we talk about ADTs, we often distinguish the code that uses the ADT,
called the client code, from the code that implements the ADT, called provider
code because it provides a standard set of services.

150 Stacks

15.2 The Stack ADT

In this chapter we will look at one common ADT, the stack. A stack is a
collection, meaning that it is a data structure that contains multiple elements.
Other collections we have seen include arrays and lists.

As I said, an ADT is defined by a set of operations. Stacks can perform the
following set of operations:

constructor: Create a new, empty stack.

push: Add a new item to the stack.

pop: Remove and return an item from the stack. The item that is returned is
always the last one that was added.

empty: Check whether the stack is empty.

A stack is sometimes called a “last in, first out,” or LIFO data structure, because
the last item added is the first to be removed.

15.3 The Java Stack Object

Java provides a built-in object type called Stack that implements the Stack
ADT. You should make some effort to keep these two things—the ADT and
the Java implementation—straight. Before using the Stack class, we have to
import it from java.util.

Then the syntax for constructing a new Stack is

Stack stack = new Stack ();

Initially the stack is empty, as we can confirm with the empty method, which
returns a boolean:

System.out.println (stack.empty ());

A stack is a generic data structure, which means that we can add any type of
item to it. In the Java implementation, though, we can only add object types.
For our first example, we’ll use Node objects, as defined in the previous chapter.
Let’s start by creating and printing a short list.

LinkedList list = new LinkedList ();

list.addFirst (3);

list.addFirst (2);

list.addFirst (1);

list.print ();

The output is (1, 2, 3). To put a Node object onto the stack, use the push

method:

stack.push (list.head);

The following loop traverses the list and pushes all the nodes onto the stack:

15.4 Wrapper classes 151

for (Node node = list.head; node != null; node = node.next) {

stack.push (node);

}

We can remove an element from the stack with the pop method.

Object obj = stack.pop ();

The return type from pop is Object! That’s because the stack implementation
doesn’t really know the type of the objects it contains. When we pushed the
Node objects, they were automatically converted to Objects. When we get
them back from the stack, we have to cast them back to Nodes.

Node node = (Node) obj;

System.out.println (node);

Unfortunately, the burden falls on the programmer to keep track of the objects
in the stack and cast them back to the right type when they are removed. If
you try to cast an object to the wrong type, you get a ClassCastException.

The following loop is a common idiom for popping all the elements from a stack,
stopping when it is empty:

while (!stack.empty ()) {

Node node = (Node) stack.pop ();

System.out.print (node + " ");

}

The output is 3 2 1. In other words, we just used a stack to print the elements
of a list backwards! Granted, it’s not the standard format for printing a list,
but using a stack it was remarkably easy to do.

You should compare this code to the implementations of printBackward in
the previous chapter. There is a natural parallel between the recursive ver-
sion of printBackward and the stack algorithm here. The difference is that
printBackward uses the run-time stack to keep track of the nodes while it tra-
verses the list, and then prints them on the way back from the recursion. The
stack algorithm does the same thing, just using a Stack object instead of the
run-time stack.

15.4 Wrapper classes

For every primitive type in Java, there is a built-in object type called a wrapper
class. For example, the wrapper class for int is called Integer; for double it
is called Double.

Wrapper classes are useful for several reasons:

• You can instantiate wrapper classes and create objects that contain prim-
itive values. In other words, you can wrap a primitive value up in an
object, which is useful if you want to invoke a method that requires an
object type.

152 Stacks

• Each wrapper class contains special values (like the minimum and max-
imum values for the type), and methods that are useful for converting
between types.

15.5 Creating wrapper objects

The most straightforward way to create a wrapper object is to use its construc-
tor:

Integer i = new Integer (17);

Double d = new Double (3.14159);

Character c = new Character (’b’);

Technically String is not a wrapper class, because there is no corresponding
primitive type, but the syntax for creating a String object is the same:

String s = new String ("fred");

On the other hand, no one ever uses the constructor for String objects, because
you can get the same effect with a simple String value:

String s = "fred";

15.6 Creating more wrapper objects

Some of the wrapper classes have a second constructor that takes a String as
an argument and tries to convert to the appropriate type. For example:

Integer i = new Integer ("17");

Double d = new Double ("3.14159");

The type conversion process is not very robust. For example, if the Strings are
not in the right format, they will cause a NumberFormatException. Any non-
numeric character in the String, including a space, will cause the conversion to
fail.

Integer i = new Integer ("17.1"); // WRONG!!

Double d = new Double ("3.1459 "); // WRONG!!

It is usually a good idea to check the format of the String before you try to
convert it.

15.7 Getting the values out

Java knows how to print wrapper objects, so the easiest way to extract a value
is just to print the object:

Integer i = new Integer (17);

Double d = new Double (3.14159);

System.out.println (i);

System.out.println (d);

15.8 Useful methods in the wrapper classes 153

Alternatively, you can use the toString method to convert the contents of the
wrapper object to a String

String istring = i.toString();

String dstring = d.toString();

Finally, if you just want to extract the primitive value from the object, there is
an object method in each wrapper class that does the job:

int iprim = i.intValue ();

double dprim = d.doubleValue ();

There are also methods for converting wrapper objects into different primitive
types. You should check out the documentation for each wrapper class to see
what is available.

15.8 Useful methods in the wrapper classes

As I mentioned, the wrapper classes contain useful methods that pertain to each
type. For example, the Character class contains lots of methods for converting
characters to upper and lower case, and for checking whether a character is a
number, letter, or symbol.

The String class also contains methods for converting to upper and lower case.
Keep in mind, though, that they are functions, not modifiers (see Section 7.10).

As another example, the Integer class contains methods for interpreting and
printing integers in different bases. If you have a String that contains a number
in base 6, you can convert to base 10 using parseInt.

String base6 = "12345";

int base10 = Integer.parseInt (base6, 6);

System.out.println (base10);

Since parseInt is a class method, you invoke it by naming the class and the
method in dot notation.

Base 6 might not be all that useful, but hexadecimal (base 16) and octal (base
8) are common for computer science related things.

15.9 Postfix expressions

In most programming languages, mathematical expressions are written with the
operator between the two operands, as in 1+2. This format is called infix. An
alternate format used by some calculators is called postfix. In postfix, the
operator follows the operands, as in 1 2+.

The reason postfix is sometimes useful is that there is a natural way to evaluate
a postfix expression using a stack.

• Starting at the beginning of the expression, get one term (operator or
operand) at a time.

154 Stacks

– If the term is an operand, push it on the stack.

– If the term is an operator, pop two operands off the stack, perform
the operation on them, and push the result back on the stack.

• When we get to the end of the expression, there should be exactly one
operand left on the stack. That operand is the result.

As an exercise, apply this algorithm to the expression 1 2 + 3 *.

This example demonstrates one of the advantages of postfix: there is no need
to use parentheses to control the order of operations. To get the same result
in infix, we would have to write (1 + 2) * 3. As an exercise, write a postfix
expression that is equivalent to 1 + 2 * 3?

15.10 Parsing

In order to implement the algorithm from the previous section, we need to
be able to traverse a string and break it into operands and operators. This
process is an example of parsing, and the results—the individual chunks of the
string—are called tokens.

Java provides a built-in class called a StringTokenizer that parses strings and
breaks them into tokens. To use it, you have to import it from java.util.

In its simplest form, the StringTokenizer uses spaces to mark the boundaries
between tokens. A character that marks a boundary is called a delimiter.

We can create a StringTokenizer in the usual way, passing as an argument
the string we want to parse.

StringTokenizer st = new StringTokenizer ("Here are four tokens.");

The following loop is a standard idiom for extracting the tokens from a
StringTokenizer.

while (st.hasMoreTokens ()) {

System.out.println (st.nextToken());

}

The output is

Here

are

four

tokens.

For parsing expressions, we have the option of specifying additional characters
that will be used as delimiters:

StringTokenizer st = new StringTokenizer ("11 22+33*", " +-*/");

The second argument is a String that contains all the characters that will be
used as delimiters. Now the output is:

15.11 Implementing ADTs 155

11

22

33

This succeeds at extracting all the operands but we have lost the operators.
Fortunately, there is one more option for StringTokenizers.

StringTokenizer st = new StringTokenizer ("11 22+33*", " +-*/", true);

The third argument says, “Yes, we would like to treat the delimiters as tokens.”
Now the output is

11

22

+

33

*

This is just the stream of tokens we would like for evaluating this expression.

15.11 Implementing ADTs

One of the fundamental goals of an ADT is to separate the interests of the
provider, who writes the code that implements the ADT, and the client, who
uses the ADT. The provider only has to worry about whether the implemen-
tation is correct—in accord with the specification of the ADT—and not how it
will be used.

Conversely, the client assumes that the implementation of the ADT is correct
and doesn’t worry about the details. When you are using one of Java’s built-in
classes, you have the luxury of thinking exclusively as a client.

When you implement an ADT, on the other hand, you also have to write client
code to test it. In that case, you sometimes have to think carefully about which
role you are playing at a given instant.

In the next few sections we will switch gears and look at one way of implementing
the Stack ADT, using an array. Start thinking like a provider.

15.12 Array implementation of the Stack ADT

The instance variables for this implementation are an array of Objects, which
will contain the items on the stack, and an integer index which will keep track
of the next available space in the array. Initially, the array is empty and the
index is 0.

To add an element to the stack (push), we’ll copy a reference to it onto the stack
and increment the index. To remove an element (pop) we have to decrement
the index first and then copy the element out.

Here is the class definition:

156 Stacks

public class Stack {

Object[] array;

int index;

public Stack () {

this.array = new Object[128];

this.index = 0;

}

}

As usual, once we have chosen the instance variables, it is a mechanical process
to write a constructor. For now, the default size is 128 items. Later we will
consider better ways of handling this.

Checking for an empty stack is trivial.

public boolean empty () {

return index == 0;

}

It is important to remember, though, that the number of elements in the stack
is not the same as the size of the array. Initially the size is 128, but the number
of elements is 0.

The implementations of push and pop follow naturally from the specification.

public void push (Object item) {

array[index] = item;

index++;

}

public Object pop () {

index--;

return array[index];

}

To test these methods, we can take advantage of the client code we used
to exercise the built-in Stack. All we have to do is comment out the line
import java.util.Stack. Then, instead of using the stack implementation
from java.util the program will use the implementation we just wrote.

If everything goes according to plan, the program should work without any
additional changes. Again, one of the strengths of using an ADT is that you
can change implementations without changing client code.

15.13 Resizing arrays

A weakness of this implementation is that it chooses an arbitrary size for the
array when the Stack is created. If the user pushes more than 128 items onto
the stack, it will cause an ArrayIndexOutOfBounds exception.

15.13 Resizing arrays 157

An alternative is to let the client code specify the size of the array. This alleviates
the problem, but it requires the client to know ahead of time how many items
are needed, and that is not always possible.

A better solution is to check whether the array is full and make it bigger when
necessary. Since we have no idea how big the array needs to be, it is a reasonable
strategy to start with a small size and double it each time it overflows.

Here’s the improved version of push:

public void push (Object item) {

if (full ()) resize ();

// at this point we can prove that index < array.length

array[index] = item;

index++;

}

Before putting the new item in the array, we check if the array is full. If so,
we invoke resize. After the if statement, we know that either (1) there was
room in the array, or (2) the array has been resized and there is room. If full
and resize are correct, then we can prove that index < array.length, and
therefore the next statement cannot cause an exception.

Now all we have to do is implement full and resize.

private boolean full () {

return index == array.length;

}

private void resize () {

Object[] newArray = new Object[array.length * 2];

// we assume that the old array is full

for (int i=0; i<array.length; i++) {

newArray[i] = array[i];

}

array = newArray;

}

Both methods are declared private, which means that they cannot be invoked
from another class, only from within this one. This is acceptable, since there is
no reason for client code to use these functions, and desirable, since it enforces
the boundary between the implementation and the client.

The implementation of full is trivial; it just checks whether the index has gone
beyond the range of valid indices.

The implementation of resize is straightforward, with the caveat that it as-
sumes that the old array is full. In other words, that assumption is a precon-
dition of this method. It is easy to see that this precondition is satisfied, since

158 Stacks

the only way resize is invoked is if full returns true, which can only happen
if index == array.length.

At the end of resize, we replace the old array with the new one (causing the old
to be garbage collected). The new array.length is twice as big as the old, and
index hasn’t changed, so now it must be true that index < array.length.
This assertion is a postcondition of resize: something that must be true
when the method is complete (as long as its preconditions were satisfied).

Preconditions, postconditions, and invariants are useful tools for analyzing pro-
grams and demonstrating their correctness. In this example I have demonstrated
a programming style that facilitates program analysis and a style of documen-
tation that helps demonstrate correctness.

15.14 Glossary

abstract data type (ADT): A data type (usually a collection of objects)
that is defined by a set of operations, but that can be implemented in
a variety of ways.

client: A program that uses an ADT (or the person who wrote the program).

provider: The code that implements an ADT (or the person who wrote it).

wrapper class: One of the Java classes, like Double and Integer that provide
objects to contain primitive types, and methods that operate on primi-
tives.

private: A Java keyword that indicates that a method or instance variable
cannot be accessed from outside the current class definition.

infix: A way of writing mathematical expressions with the operators between
the operands.

postfix: A way of writing mathematical expressions with the operators after
the operands.

parse: To read a string of characters or tokens and analyze their grammatical
structure.

token: A set of characters that are treated as a unit for purposes of parsing,
like the words in a natural language.

delimiter: A character that is used to separate tokens, like the punctuation in
a natural language.

predicate: A mathematical statement that is either true or false.

postcondition: A predicate that must be true at the end of a method (provided
that the preconditions were true at the beginning).

Chapter 16

Queues and Priority Queues

This chapter presents two ADTs: Queues and Priority Queues. In real life a
queue is a line of customers waiting for service of some kind. In most cases, the
first customer in line is the next customer to be served. There are exceptions,
though. For example, at airports customers whose flight is leaving imminently
are sometimes taken from the middle of the queue. Also, at supermarkets a
polite customer might let someone with only a few items go first.

The rule that determines who goes next is called a queueing discipline. The
simplest queueing discipline is called FIFO, for “first-in-first-out.” The most
general queueing discipline is priority queueing, in which each customer is as-
signed a priority, and the customer with the highest priority goes first, regardless
of the order of arrival. The reason I say this is the most general discipline is
that the priority can be based on anything: what time a flight leaves, how many
groceries the customer has, or how important the customer is. Of course, not
all queueing disciplines are “fair,” but fairness is in the eye of the beholder.

The Queue ADT and the Priority Queue ADT have the same set of operations
and their interfaces are the same. The difference is in the semantics of the
operations: a Queue uses the FIFO policy, and a Priority Queue (as the name
suggests) uses the priority queueing policy.

As with most ADTs, there are a number of ways to implement queues. Since a
queue is a collection of items, we can use any of the basic mechanisms for storing
collections, including arrays and lists. Our choice among them will be based in
part on their performance— how long it takes to perform the operations we
want to perform— and partly on ease of implementation.

16.1 The queue ADT

The queue ADT is defined by the following operations:

constructor: Create a new, empty queue.

160 Queues and Priority Queues

insert: Add a new item to the queue.

remove: Remove and return an item from the queue. The item that is returned
is the first one that was added.

empty: Check whether the queue is empty.

To demonstrate a queue implementation, I will take advantage of the
LinkedList class from Chapter 14. Also, I will assume that we have a class
named Customer that defines all the information about each customer, and the
operations we can perform on customers.

As far as our implementation goes, it does not matter what kind of object is in
the Queue, so we can make it generic. Here is what the implementation looks
like.

public class Queue {

public LinkedList list;

public Queue () {

list = new List ();

}

public boolean empty () {

return list.empty ();

}

public void insert (Object obj) {

list.addLast (obj);

}

public Object remove () {

return list.removeFirst ();

}

}

A queue object contains a single instance variable, which is the list that imple-
ments it. For each of the other methods, all we have to do is invoke one of the
methods from the LinkedList class.

16.2 Veneer

An implementation like this is called a veneer. In real life, veneer is a thin
coating of good quality wood used in furniture-making to hide lower quality
wood underneath. Computer scientists use this metaphor to describe a small
piece of code that hides the details of an implementation and provides a simpler,
or more standard, interface.

16.3 Linked Queue 161

This example demonstrates one of the nice things about a veneer, which is that
it is easy to implement, and one of the dangers of using a veneer, which is the
performance hazard!

Normally when we invoke a method we are not concerned with the details of
its implementation. But there is one “detail” we might want to know—the
performance characteristics of the method. How long does it take, as a function
of the number of items in the list?

First let’s look at removeFirst.

public Object removeFirst () {

Object result = head;

if (head != null) {

head = head.next;

}

return result;

}

There are no loops or function calls here, so that suggests that the run time of
this method is the same every time. Such a method is called a constant time
operation. In reality, the method might be slightly faster when the list is empty,
since it skips the body of the conditional, but that difference is not significant.

The performance of addLast is very different.

public void addLast (Object obj) {

// special case: empty list

if (head == null) {

head = new Node (obj, null);

return;

}

Node last;

for (last = head; last.next != null; last = last.next) {

// traverse the list to find the last node

}

last.next = new Node (obj, null);

}

The first conditional handles the special case of adding a new node to an empty
list. In this case, again, the run time does not depend on the length of the list.
In the general case, though, we have to traverse the list to find the last element
so we can make it refer to the new node.

This traversal takes time proportional to the length of the list. Since the run
time is a linear function of the length, we would say that this method is linear
time. Compared to constant time, that’s very bad.

16.3 Linked Queue

We would like an implementation of the Queue ADT that can perform all oper-
ations in constant time. One way to accomplish that is to implement a linked

162 Queues and Priority Queues

queue, which is similar to a linked list in the sense that it is made up of zero or
more linked Node objects. The difference is that the queue maintains a reference
to both the first and the last node, as shown in the figure.

cargo

next

cargo

next

cargo

next

first last

Here’s what a linked Queue implementation looks like:

public class Queue {

public Node first, last;

public Queue () {

first = null;

last = null;

}

public boolean empty () {

return first == null;

}

}

So far it is straightforward. In an empty queue, both first and last are null.
To check whether a list is empty, we only have to check one of them.

insert is a little more complicated because we have to deal with several special
cases.

public void insert (Object obj) {

Node node = new Node (obj, null);

if (last != null) {

last.next = node;

}

last = node;

if (first == null) {

first = last;

}

}

The first condition checks to make sure that last refers to a node; if it does
then we have to make it refer to the new node.

The second condition deals with the special case where the list was initially
empty. In this case both first and last refer to the new node.

16.4 Circular buffer 163

remove also deals with several special cases.

public Object remove () {

Node result = first;

if (first != null) {

first = first.next;

}

if (first == null) {

last = null;

}

return result;

}

The first condition checks whether there were any nodes in the queue. If so, we
have to copy the next node into first. The second condition deals with the
special case that the list is now empty, in which case we have to make last null.

As an exercise, draw diagrams showing both operations in both the normal case
and in the special cases, and convince yourself that they are correct.

Clearly, this implementation is more complicated than the veneer implementa-
tion, and it is more difficult to demonstrate that it is correct. The advantage is
that we have achieved the goal: both insert and remove are constant time.

16.4 Circular buffer

Another common implementation of a queue is a circular buffer. “Buffer” is
a general name for a temporary storage location, although it often refers to an
array, as it does in this case. What it means to say a buffer is “circular” should
become clear in a minute.

The implementation of a circular buffer is similar to the array implementation of
a stack, as in Section 15.12. The queue items are stored in an array, and we use
indices to keep track of where we are in the array. In the stack implementation,
there was a single index that pointed to the next available space. In the queue
implementation, there are two indices: first points to the space in the array
that contains the first customer in line and next points to the next available
space.

The following figure shows a queue with two items (represented by dots).

first next

0 2

first next

164 Queues and Priority Queues

There are two ways to think of the variables first and last. Literally, they are
integers, and their values are shown in boxes on the right. Abstractly, though,
they are indices of the array, and so they are often drawn as arrows pointing to
locations in the array. The arrow representation is convenient, but you should
remember that the indices are not references; they are just integers.

Here is an incomplete array implementation of a queue:

public class Queue {

public Object[] array;

public int first, next;

public Queue () {

array = new Object[128];

first = 0;

next = 0;

}

public boolean empty () {

return first == next;

}

The instance variables and the constructor are straightforward, although again
we have the problem that we have to choose an arbitrary size for the array.
Later we will solve that problem, as we did with the stack, by resizing the array
if it gets full.

The implementation of empty is a little surprising. You might have thought that
first == 0 would indicate an empty queue, but that neglects the fact that the
head of the queue is not necessarily at the beginning of the array. Instead,
we know that the queue is empty if head equals next, in which case there are
no items left. Once we see the implementation of insert and remove, that
situation will make more sense.

public void insert (Object item) {

array[next] = item;

next++;

}

public Object remove () {

Object result = array[first];

first++;

return result;

}

insert looks very much like push in Section 15.12; it puts the new item in the
next available space and then increments the index.

remove is similar. It takes the first item from the queue and then increments
first so it refers to the new head of the queue. The following figure shows
what the queue looks like after both items have been removed.

16.4 Circular buffer 165

first

22

first next

next

It is always true that next points to an available space. If first catches up
with next and points to the same space, then first is referring to an “empty”
location, and the queue is empty. I put “empty” in quotation marks because it
is possible that the location that first points to actually contains a value (we
do nothing to ensure that empty locations contain null); on the other hand,
since we know the queue is empty, we will never read this location, so we can
think of it, abstractly, as empty.

As an exercise, fix remove so that it returns null if the queue is empty.

The next problem with this implementation is that eventually it will run out of
space. When we add an item we increment next and when we remove an item
we increment first, but we never decrement either. What happens when we
get to the end of the array?

The following figure shows the queue after we add four more items:

first next

2

first

6

next

The array is now full. There is no “next available space,” so there is nowhere
for next to point. One possibility is that we could resize the array, as we did
with the stack implementation. But in that case the array would keep getting
bigger regardless of how many items were actually in queue. A better solution
is to wrap around to the beginning of the array and reuse the spaces there. This
“wrap around” is the reason this implementation is called a circular buffer.

One way to wrap the index around is to add a special case whenever we incre-
ment an index:

next++;

if (next == array.length) next = 0;

A fancy alternative is to use the modulus operator:

166 Queues and Priority Queues

next = (next + 1) % array.length;

Either way, we have one last problem to solve. How do we know if the queue
is really full, meaning that we cannot insert another item? The following figure
shows what the queue looks like when it is “full.”

first next

2

first

0

next

There is still one empty space in the array, but the queue is full because if we
insert another item, then we have to increment next such that next == first,
and in that case it would appear that the queue was empty!

To avoid that, we sacrifice one space in the array. So how can we tell if the
queue is full?

if ((next + 1) % array.length == first)

And what should we do if the array is full? In that case resizing the array is
probably the only option.

As an exercise, put together all the code from this section and write an imple-
mentation of a queue using a circular buffer that resizes itself when necessary.

16.5 Priority queue

The Priority Queue ADT has the same interface as the Queue ADT, but different
semantics. The interface is:

constructor: Create a new, empty queue.

insert: Add a new item to the queue.

remove: Remove and return an item from the queue. The item that is returned
is the one with the highest priority.

empty: Check whether the queue is empty.

The semantic difference is that the item that is removed from the queue is not
necessarily the first one that was added. Rather, it is whatever item in the queue
has the highest priority. What the priorities are, and how they compare to each
other, are not specified by the Priority Queue implementation. It depends on
what the items are that are in the queue.

16.6 Abstract class 167

For example, if the items in the queue have names, we might choose them in
alphabetical order. If they are bowling scores, we might choose from highest to
lowest, but if they are golf scores, we would go from lowest to highest.

So we face a new problem. We would like an implementation of Priority Queue
that is generic—it should work with any kind of object—but at the same time
the code that implements Priority Queue needs to have the ability to compare
the objects it contains.

We have seen a way to implement generic data structures using Objects, but
that does not solve this problem, because there is no way to compare Objects

unless we know what type they are.

The answer lies in a new Java feature called an abstract class.

16.6 Abstract class

An abstract class is a set of classes. The abstract class definition specifies the
requirements a class must satisfy to be a member.

Often abstract classes have names that end in “able” to indicate the fundamental
capability the abstract class requires. For example, any class that provides a
method named draw can be a member of the abstract class named Drawable.
Any class that contains a method named start can be a member of the abstract
class Runnable.

As of Java 2, Java provides a built-in abstract class that we can use in an
implementation of a Priority Queue. It is called Comparable, and it means
what it says. Any class that belongs to the Comparable abstract class has to
provide a method named compareTo that compares two objects and returns a
value indicating whether one is larger or smaller than the other, or whether they
are the same.

Many of the built-in Java classes are members of the Comparable abstract class,
including numeric wrapper classes like Integer and Double.

In the next section I will show how to write an ADT that manipulates an
abstract class. Then we will see how to write a new (concrete) class that belongs
to an existing abstract class. Then we will see how to write a new abstract class.

16.7 Array implementation of Priority Queue

In the implementation of the Priority Queue, every time we specify the type of
the items in the queue, we specify the abstract class Comparable. For example,
the instance variables are an array of Comparables and an integer:

public class PriorityQueue {

private Comparable[] array;

private int index;

}

168 Queues and Priority Queues

As usual, index is the index of the next available location in the array. The
instance variables are declared private so that other classes cannot have direct
access to them.

The constructor and empty are similar to what we have seen before. I chose the
initial size for the array arbitrarily.

public PriorityQueue () {

array = new Comparable [16];

index = 0;

}

public boolean empty () {

return index == 0;

}

insert is similar to push:

public void insert (Comparable item) {

if (index == array.length) {

resize ();

}

array[index] = item;

index++;

}

I omitted the implementation of resize. The only substantial method in the
class is remove, which has to traverse the array to find and remove the largest
item:

public Comparable remove () {

if (index == 0) return null;

int maxIndex = 0;

// find the index of the item with the highest priority

for (int i=1; i<index; i++) {

if (array[i].compareTo (array[maxIndex]) > 0) {

maxIndex = i;

}

}

Comparable result = array[maxIndex];

// move the last item into the empty slot

index--;

array[maxIndex] = array[index];

return result;

}

As we traverse the array, maxIndex keeps track of the index of the largest
element we have seen so far. What it means to be the “largest” is determined
by compareTo. In this case the compareTo method is provided by the Integer

class, and it does what we expect—larger (more positive) numbers win.

16.8 A Priority Queue client 169

16.8 A Priority Queue client

The implementation of Priority Queue is written entirely in terms of Comparable
objects, but there is no such thing as a Comparable object! Go ahead, try to
create one:

Comparable comp = new Comparable (); // ERROR

You’ll get a compile-time message that says something like
“java.lang.Comparable is an interface. It can’t be instantiated.” In Java,
abstract classes are called interfaces. I have avoided this word so far because
it also means several other things, but now you have to know.

Why can’t abstract classes be instantiated? Because an abstract class only
specifies requirements (you must have a compareTo method); it does not provide
an implementation.

To create a Comparable object, you have to create one of the objects that
belongs to the Comparable set, like Integer. Then you can use that object
anywhere a Comparable is called for.

PriorityQueue pq = new PriorityQueue ();

Integer item = new Integer (17);

pq.insert (item);

This code creates a new, empty Priority Queue and a new Integer object.
Then it inserts the Integer into the queue. insert is expecting a Comparable

as a parameter, so it is perfectly happy to take an Integer. If we try to pass
a Rectangle, which does not belong to Comparable, we get a compile-time
message like, “Incompatible type for method. Explicit cast needed to convert
java.awt.Rectangle to java.lang.Comparable.”

That’s the compiler telling us that if we want to make that conversion, we have
to do it explicitly. We might try to do what it says:

Rectangle rect = new Rectangle ();

pq.insert ((Comparable) rect);

But in that case we get a run-time error, a ClassCastException. When the
Rectangle tries to pass as a Comparable, the run-time system checks whether
it satisfies the requirements, and rejects it. So that’s what we get for following
the compiler’s advise.

To get items out of the queue, we have to reverse the process:

while (!pq.empty ()) {

item = (Integer) pq.remove ();

System.out.println (item);

}

This loop removes all the items from the queue and prints them. It assumes
that the items in the queue are Integers. If they were not, we would get a
ClassCastException.

170 Queues and Priority Queues

16.9 The Golfer class

Finally, let’s look at how we can make a new class that belongs to Comparable.
As an example of something with an unusual definition of “highest” priority,
we’ll use golfers:

public class Golfer implements Comparable {

String name;

int score;

public Golfer (String name, int score) {

this.name = name;

this.score = score;

}

}

The class definition and the constructor are pretty much the same as always; the
difference is that we have to declare that Golfer implements Comparable. In
this case the keyword implements means that Golfer implements the interface
specified by Comparable.

If we try to compile Golfer.java at this point, we get something like
“class Golfer must be declared abstract. It does not define int com-
pareTo(java.lang.Object) from interface java.lang.Comparable.” In other words,
to be a Comparable, Golfer has to provide a method named compareTo. So
let’s write one:

public int compareTo (Object obj) {

Golfer that = (Golfer) obj;

int a = this.score;

int b = that.score;

// for golfers, low is good!

if (a<b) return 1;

if (a>b) return -1;

return 0;

}

Two things here are a little surprising. First, the parameter is an Object.
That’s because in general the caller doesn’t know what type the objects are that
are being compared. For example, in PriorityQueue.java when we invoke
compareTo, we pass a Comparable as a parameter. We don’t have to know
whether it is an Integer or a Golfer or whatever.

Inside compareTo we have to convert the parameter from an Object to a Golfer.
As usual, there is a risk when we do this kind of cast: if we cast to the wrong
type we get an exception.

Finally, we can create some golfers:

Golfer tiger = new Golfer ("Tiger Woods", 61);

16.10 Glossary 171

Golfer phil = new Golfer ("Phil Mickelson", 72);

Golfer hal = new Golfer ("Hal Sutton", 69);

And put them in the queue:

pq.insert (tiger);

pq.insert (phil);

pq.insert (hal);

When we pull them out:

while (!pq.empty ()) {

golfer = (Golfer) pq.remove ();

System.out.println (golfer);

}

They appear in descending order (for golfers):

Tiger Woods 61

Hal Sutton 69

Phil Mickelson 72

When we switched from Integers to Golfers, we didn’t have to make any
changes in PriorityQueue.java at all. So we succeeded in maintaining a barrier
between PriorityQueue and the classes that use it, allowing us to reuse the code
without modification. Furthermore, we were able to give the client code control
over the definition of compareTo, making this implementation of PriorityQueue
more versatile.

16.10 Glossary

queue: An ordered set of objects waiting for a service of some kind.

queueing discipline: The rules that determine which member of a queue is
removed next.

FIFO: “first in, first out,” a queueing discipline in which the first member to
arrive is the first to be removed.

priority queue: A queueing discipline in which each member has a priority
determined by external factors. The member with the highest priority is
the first to be removed.

Priority Queue: An ADT that defines the operations one might perform on
a priority queue.

veneer: A class definition that implements an ADT with method definitions
that are invocations of other methods, sometimes with simple transforma-
tions. The veneer does no significant work, but it improves or standardizes
the interface seen by the client.

performance hazard: A danger associated with a veneer that some of the
methods might be implemented inefficiently in a way that is not apparent
to the client.

172 Queues and Priority Queues

constant time: An operation whose run time does not depend on the size of
the data structure.

linear time: An operation whose run time is a linear function of the size of
the data structure.

linked queue: An implementation of a queue using a linked list and references
to the first and last nodes.

circular buffer: An implementation of a queue using an array and indices of
the first element and the next available space.

abstract class: A set of classes. The abstract class specification lists the re-
quirements a class must satisfy to be included in the set.

interface: The Java word for an abstract class. Not to be confused with the
more broad meaning of the word interface.

Chapter 17

Trees

This chapter presents a new data structure called a tree, some of its uses and
two ways to implement it.

A possible source of confusion is the distinction between an ADT, a data struc-
ture, and an implementation of an ADT or data structure. There is no universal
answer, because something that is an ADT at one level might in turn be the
implementation of another ADT.

To help keep some of this straight, it is sometimes useful to draw a diagram
showing the relationship between an ADT and its possible implementations.
This figure shows that there are two implementations of a tree:

linked

implementation

array

implementation

Tree

The horizontal line in the figure represents the barrier of abstraction between
the ADT and its implementations.

17.1 A tree node

Like lists, trees are made up of nodes. A common kind of tree is a binary tree,
in which each node contains a reference to two other nodes (possibly null). The
class definition looks like this:

public class Tree {

Object cargo;

Tree left, right;

}

174 Trees

Like list nodes, tree nodes contain cargo: in this case a generic Object. The
other instance variables are named left and right, in accordance with a stan-
dard way to represent trees graphically:

1cargo

rightleft

rightleft rightleft

2cargo 3cargo

tree

The top of the tree (the node referred to by tree) is called the root. In keeping
with the tree metaphor, the other nodes are called branches and the nodes at
the tips with null references are called leaves. It may seem odd that we draw
the picture with the root at the top and the leaves at the bottom, but that is
not the strangest thing.

To make things worse, computer scientists mix in yet another metaphor: the
family tree. The top node is sometimes called a parent and the nodes it refers
to are its children. Nodes with the same parent are called siblings, and so on.

Finally, there is also a geometric vocabulary for taking about trees. I already
mentioned left and right, but there is also “up” (toward the parent/root) and
down (toward the children/leaves). Also, all the nodes that are the same dis-
tance from the root comprise a level of the tree.

I don’t know why we need three metaphors for talking about trees, but there it
is.

17.2 Building trees

The process of assembling tree nodes is similar to the process of assembling lists.
We have a constructor for tree nodes that initializes the instance variables.

public Tree (Object cargo, Tree left, Tree right) {

this.cargo = cargo;

this.left = left;

this.right = right;

}

We allocate the child nodes first:

Tree left = new Tree (new Integer(2), null, null);

Tree right = new Tree (new Integer(3), null, null);

17.3 Traversing trees 175

We can create the parent node and link it to the children at the same time:

Tree tree = new Tree (new Integer(1), left, right);

This code produces the state shown in the previous figure.

17.3 Traversing trees

The most natural way to traverse a tree is recursively. For example, to add up
all the integers in a tree, we could write this class method:

public static int total (Tree tree) {

if (tree == null) return 0;

Integer cargo = (Integer) tree.cargo;

return cargo.intValue() + total (tree.left) + total (tree.right);

}

This is a class method because we would like to use null to represent the empty
tree, and make the empty tree the base case of the recursion. If the tree is empty,
the method returns 0. Otherwise it makes two recursive calls to find the total
value of its two children. Finally, it adds in its own cargo and returns the total.

Although this method works, there is some difficulty fitting it into an object-
oriented design. It should not appear in the Tree class because it requires the
cargo to be Integer objects. If we make that assumption in Tree.java then
we lose the advantages of a generic data structure.

On the other hand, this code accesses the instance variables of the Tree nodes,
so it “knows” more than it should about the implementation of the tree. If we
changed that implementation later (and we will) this code would break.

Later in this chapter we will develop ways to solve this problem, allowing client
code to traverse trees containing any kinds of objects without breaking the
abstraction barrier between the client code and the implementation. Before we
get there, let’s look at an application of trees.

17.4 Expression trees

A tree is a natural way to represent the structure of an expression. Unlike other
notations, it can represent the comptation unambiguously. For example, the
infix expression 1 + 2 * 3 is ambiguous unless we know that the multiplication
happens before the addition.

The following figure represents the same computation:

176 Trees

1cargo

rightleft

rightleft

2cargo

rightleft

3cargo

rightleft

cargo

rightleft

cargo

*

+

The nodes can be operands like 1 and 2 or operators like + and *. Operands
are leaf nodes; operator nodes contain references to their operands (all of these
operators are binary, meaning they have exactly two operands).

Looking at this figure, there is no question what the order of operations is:
the multiplication happens first in order to compute the first operand of the
addition.

Expression trees like this have many uses. The example we are going to look
at is translation from one format (postfix) to another (infix). Similar trees are
used inside compilers to parse, optimize and translate programs.

17.5 Traversal

I already pointed out that recursion provides a natural way to traverse a tree.
We can print the contents of an expression tree like this:

public static void print (Tree tree) {

if (tree == null) return;

System.out.print (tree + " ");

print (tree.left);

print (tree.right);

}

In other words, to print a tree, first print the contents of the root, then print the
entire left subtree, then print the entire right subtree. This way of traversing
a tree is called a preorder, because the contents of the root appear before the
contents of the children.

For the example expression the output is + 1 * 2 3. This is different from
both postfix and infix; it is a new notation called prefix, in which the operators
appear before their operands.

17.6 Encapsulation 177

You might suspect that if we traverse the tree in a different order we get the
expression in a different notation. For example, if we print the subtrees first,
and then the root node:

public static void printPostorder (Tree tree) {

if (tree == null) return;

printPostorder (tree.left);

printPostorder (tree.right);

System.out.print (tree + " ");

}

We get the expression in postfix (1 2 3 * +)! As the name of the previous
method implies, this order of traversal is called postorder. Finally, to traverse
a tree inorder, we print the left tree, then the root, then the right tree:

public static void printInorder (Tree tree) {

if (tree == null) return;

printInorder (tree.left);

System.out.print (tree + " ");

printInorder (tree.right);

}

The result is 1 + 2 * 3, which is the expression in infix.

To be fair, I have to point out that I omitted an important complication. Some-
times when we write an expression in infix we have to use parentheses to preserve
the order of operations. So an inorder traversal is not quite sufficient to generate
an infix expression.

Nevertheless, with a few improvements, the expression tree and the three recur-
sive traversals provide a general way to translate expressions from one format
to another.

17.6 Encapsulation

As I mentioned before, there is a problem with the way we have been traversing
trees: it breaks down the barrier between the client code (the application that
uses the tree) and the provider code (the Tree implementation). Ideally, tree
code should be general; it shouldn’t know anything about expression trees.
And the code that generates and traverses the expression tree shouldn’t know
about the implementation of the trees. This design criterion is called object
encapsulation to distinguish it from the encapsulation we saw in Section 6.6,
which we might call method encapsulation.

In the current version, the Tree code knows too much about the client. Instead,
the Tree class should provide the general capability of traversing a tree in var-
ious ways. As it traverses, it should perform operations on each node that are
specified by the client.

To facilitate this separation of interests, we will create a new abstract class,
called Visitable. The items stored in a tree will be required to be visitable,

178 Trees

which means that they define a method named visit that does whatever the
client wants done to each node. That way the Tree can perform the traversal
and the client can perform the node operations.

Here are the steps we have to perform to wedge an abstract class between a
client and a provider:

1. Define an abstract class that specifies the methods the provider code will
need to invoke on its components.

2. Write the provider code in terms of the new abstract class, as opposed to
generic Objects.

3. Define a concrete class that belongs to the abstract class and that imple-
ments the required methods as appropriate for the client.

4. Write the client code to use the new concrete class.

The next few sections demonstrate these steps.

17.7 Defining an abstract class

An abstract class definition looks a lot like a concrete class definition, except
that it only specifies the interface of each method and not an implementation.
The definition of Visitable is

public interface Visitable {

public void visit ();

}

That’s it! The word interface is Java’s keyword for an abstract class. The
definition of visit looks like any other method definition, except that it has no
body. This definition specifies that any class that implements Visitable has to
have a method named visit that takes no parameters and that returns void.

Like other class definitions, abstract class definitions go in a file with the same
name as the class (in this case Visitable.java).

17.8 Implementing an abstract class

If we are using an expression tree to generate infix, then “visiting” a node means
printing its contents. Since the contents of an expression tree are tokens, we’ll
create a new concrete class called Token that implements Visitable

public class Token implements Visitable {

String str;

public Token (String str) {

this.str = str;

17.9 Array implementation of trees 179

}

public void visit () {

System.out.print (str + " ");

}

}

When we compile this class definition (which is in a file named Token.java), the
compiler checks whether the methods provided satisfy the requirements specified
by the abstract class. If not, it will produce an error message. For example, if
we misspell the name of the method that is supposed to be visit, we might get
something like, “class Token must be declared abstract. It does not define void
visit() from interface Visitable.”

The next step is to modify the parser to put Token objects into the tree instead
of Strings. Here is a small example:

String expr = "1 2 3 * +";

StringTokenizer st = new StringTokenizer (expr, " +-*/", true);

String token = st.nextToken();

Tree tree = new Tree (new Token (token), null, null));

This code takes the first token in the string and wraps it in a Token object,
then puts the Token into a tree node. If the Tree requires the cargo to be
Visitable, it will convert the Token to be a Visitable object. When we
remove the Visitable from the tree, we will have to cast it back into a Token.

As an exercise, write a version of printPreorder called visitPreorder that
traverses the tree and invokes visit on each node in preorder.

17.9 Array implementation of trees

What does it mean to “implement” a tree? So far we have only seen one
implementation of a tree, a linked data structure similar to a linked list. But
there are other structures we would like to identify as trees. Anything that can
perform the basic set of tree operations should be recognized as a tree.

So what are the tree operations? In other words, how do we define the Tree
ADT?

constructor: Build an empty tree.

isEmpty: Is this tree the empty tree?

getLeft: Return the left child of this node.

getRight: Return the left child of this node.

getParent: Return the parent of this node.

getCargo: Return the cargo object from this node.

180 Trees

setCargo: Assign a cargo object to this node (and create the node, if necessary).

In the implementation we have seen, the empty tree is represented by the special
value null. getLeft and getRight are performed by accessing the instance
variables of the node, as are getCargo and setCargo. We have not implemented
getParent yet (you might think about how to do it).

There is another implementation of trees that uses arrays and indices instead of
objects and references. To see how it works, we will start by looking at a hybrid
implementation that uses both arrays and objects.

This figure shows a tree like the ones we have been looking at, although it is
laid out sideways, with the root at the left and the leaves on the right. At the
bottom there is an array of references that refer to the objects in the trees. The
cargo objects are represented as null references.

2 3 5 6 71 40

left:

right:

left:

right:

left:

right:

left:

right:

left:

right:

left:

right:

left:

right:

You might notice that array index 1 refers to the root node and array index 0

is empty. The reason for that will become clear soon.

So now we have a tree where each node has a unique index. Furthermore, the
indices have been assigned to the nodes according to a deliberate pattern, in
order to achieve the following results:

1. The left child of the node with index i has index 2i.

2. The right child of the node with index i has index 2i + 1.

3. The parent of the node with index i has index i/2 (rounded down).

Using these formulas, we can implement getLeft, getRight and getParent

just by doing arithmetic; we don’t have to use the references at all!

Since we don’t use the references, we can get rid of them, which means that
what used to be a tree node is now just cargo and nothing else. That means we
can implement the tree as an array of cargo objects; we don’t need tree nodes
at all.

Here’s what one implementation looks like:

17.9 Array implementation of trees 181

public class Tree {

Object[] array;

int i;

public Tree () {

array = new Object [128];

i = 1;

}

public Tree (Object[] array, int i) {

this.array = array;

this.i = i;

}

No surprises so far. The instance variables are an array of Objects and an
integer that indicates where in the array the new node is found.

The first constructor initializes the array with an arbitrary initial size (we can
always resize it later). The second constructor assumes that the array of objects
already exists. All nodes that comprise a tree will share the same array and
have different values of i.

We use i to access the cargo of a given node:

public Object getCargo () {

if (i >= array.length) return null;

return array[i];

}

public void setCargo (Object obj) {

if (i >= array.length) {

array = resize (array);

}

array[i] = obj;

}

Both methods have to check the length of the array. If getCargo tries to access
a nonexistent element of the array, it returns null to indicate an empty tree.
If getCargo goes past the length of the array, it resizes the array to make room
(see Section 15.13 for a possible implementation of resize).

To check whether a node is an empty tree, we check whether the cargo is null.

public boolean empty () {

return (getCargo() == null);

}

The implementation of getLeft, getRight and getParent is just arithmetic:

public Tree getLeft () {

return new Tree (array, 2*i);

}

182 Trees

public Tree getRight () {

return new Tree (array, 2*i + 1);

}

public Tree parent () {

return new Tree (array, i/2);

}

Finally we are ready to build a tree. In another class (the client), we would
write

Tree tree = new Tree ();

tree.setCargo ("cargo for root");

The constructor builds an empty tree. Invoking setCargo puts the string
"cargo for root" into the root node.

To add children to the root node:

tree.getLeft().setCargo ("cargo for left");

tree.getRight().setCargo ("cargo for right");

In the tree class we could provide a method that prints the contents of the tree
in preorder.

public void print () {

if (isEmpty ()) return;

System.out.println (array[i]);

getLeft().print();

getRight().print();

}

We invoke this method from the client by passing the root as a parameter.

tree.print (root);

The output is

cargo for root

cargo for left

cargo for right

This implementation provides the basic operations that define a tree. As I
pointed out, the linked implementation of a tree provides the same operations,
but the syntax is different. As an exercise, modify the linked tree so that it
implements the Tree ADT.

One problem with the array implementation is that the initial size of the array
is arbitrary and it might have to be resized. This last problem can be solved by
replacing the array with a Vector.

17.10 The Vector class

The Vector is a built-in Java class in the java.util package. It is an imple-
mentation of an array of Objects, with the added feature that it can resize itself
automatically, so we don’t have to.

17.11 The Iterator class 183

The Vector class provides methods named get and set that are similar to
the getCargo and setCargo methods we wrote for the Tree class. You should
review the other Vector operations by consulting the online documentation.

Before using the Vector class, you should understand a few concepts. Every
Vector has a capacity, which is the amount of space that has been allocated to
store values, and a size, which is the number of values that are actually in the
vector.

The following figure is a simple diagram of a Vector that contains three ele-
ments, but it has a capacity of seven.

In general, it is the responsibility of the client code to make sure that the vector
has sufficient size before invoking set or get. If you try to access an element
that does not exist (in this case the elements with indices 3 through 6), you will
get an ArrayIndexOutOfBounds exception.

The Vector methods add and insert automatically increase the size of the
Vector, but set does not. The resize method adds null elements to the end
of the Vector to get to the given size.

Most of the time the client doesn’t have to worry about capacity. Whenever
the size of the Vector changes, the capacity is updated automatically. For
performance reasons, some applications might want to take control of this func-
tion, which is why there are additional methods for increasing and decreasing
capacity.

Because the client code has no access to the implementation of a vector, it is
not clear how we should traverse one. Of course, one possibility is to use a loop
variable as an index into the vector:

for (int i=0; i<v.size(); i++) {

System.out.println (v.get(i));

}

There’s nothing wrong with that, but there is another way that serves to demon-
strate the Iterator class. Vectors provide a method named iterator that
returns an Iterator object that makes it possible to traverse the vector.

17.11 The Iterator class

Iterator is an abstract class in the java.util package. It specifies three
methods:

hasNext: Does this iteration have more elements?

184 Trees

next: Return the next element, or throw an exception if there is none.

remove: Remove from the collection the last element that was returned.

The following example uses an iterator to traverse and print the elements of a
vector.

Iterator iterator = vector.iterator ();

while (iterator.hasNext ()) {

System.out.println (iterator.next ());

}

Once the Iterator is created, it is a separate object from the origi-
nal Vector. Subsequent changes in the Vector are not reflected in the
Iterator. In fact, if you modify the Vector after creating an Iterator, the
Iterator becomes invalid. If you access the Iterator again, it will cause a
ConcurrentModification exception.

In a previous section we used the Visitable abstract class to allow a client
to traverse a data structure without knowing the details of its implementation.
Iterators provide another way to do the same thing. In the first case, the
provider performs the iteration and invokes client code to “visit” each element.
In the second case the provider gives the client an object that it can use to select
elements one at a time (albeit in an order controlled by the provider).

As an exercise, write a concrete class named PreIterator that implements
the Iterator interface, and write a method named preorderIterator for the
Tree class that returns a PreIterator that selects the elements of the Tree in
preorder.

17.12 Glossary

binary tree: A tree in which each node refers to 0, 1, or 2 dependent nodes.

root: The top-most node in a tree, to which no other nodes refer.

leaf: A bottom-most node in a tree, which refers to no other nodes.

parent: The node that refers to a given node.

child: One of the nodes referred to by a node.

level: The set of nodes equidistant from the root.

prefix notation: A way of writing a mathematical expression with each oper-
ator appearing before its operands.

preorder: A way to traverse a tree, visiting each node before its children.

postorder: A way to traverse a tree, visiting the children of each node before
the node itself.

17.12 Glossary 185

inorder: A way to traverse a tree, visiting the left subtree, then the root, then
the right subtree.

class variable: A static variable declared outside of any method. It is acces-
sible from any method.

binary operator: An operator that takes two operands.

object encapsulation: The design goal of keeping the implementations of two
objects as separate as possible. Neither class should have to know the
details of the implementation of the other.

method encapsulation: The design goal of keeping the interface of a method
separate from the details of its implementation.

Chapter 18

Heap

18.1 The Heap

A heap is a special kind of tree that happens to be an efficient implementation of
a priority queue. This figure shows the relationships among the data structures
in this chapter.

linked

implementation

array

implementation

PriorityQueue

Heap

tree

Ordinarily we try to maintain as much distance as possible between an ADT
and its implementation, but in the case of the Heap, this barrier breaks down a
little. The reason is that we are interested in the performance of the operations
we implement. For each implementation there are some operations that are easy
to implement and efficient, and others that are clumsy and slow.

It turns out that the array implementation of a tree works particularly well
as an implementation of a Heap. The operations the array performs well are
exactly the operations we need to implement a Heap.

To understand this relationship, we will proceed in a few steps. First, we need to
develop ways of comparing the performance of various implementations. Next,
we will look at the operations Heaps perform. Finally, we will compare the Heap

188 Heap

implementation of a Priority Queue to the others (arrays and lists) and see why
the Heap is considered particularly efficient.

18.2 Performance analysis

When we compare algorithms, we would like to have a way to tell when one
is faster than another, or takes less space, or uses less of some other resource.
It is hard to answer those questions in detail, because the time and space used
by an algorithm depend on the implementation of the algorithm, the particular
problem being solved, and the hardware the program runs on.

The objective of this section is to develop a way of talking about performance
that is independent of all of those things, and only depends on the algorithm
itself. To start, we will focus on run time; later we will talk about other re-
sources.

Our decisions are guided by a series of constraints:

1. First, the performance of an algorithm depends on the hardware it runs
on, so we usually don’t talk about run time in absolute terms like seconds.
Instead, we usually count the number of abstract operations the algorithm
performs.

2. Second, performance often depends on the particular problem we are try-
ing to solve – some problems are easier than others. To compare algo-
rithms, we usually focus on either the worst-case scenario or an average
(or common) case.

3. Third, performance depends on the size of the problem (usually, but not
always, the number of elements in a collection). We address this depen-
dence explicitly by expressing run time as a function of problem size.

4. Finally, performance depends on details of the implementation like object
allocation overhead and method invocation overhead. We usually ignore
these details because they don’t affect the rate at which the number of
abstract operations increases with problem size.

To make this process more concrete, consider two algorithms we have already
seen for sorting an array of integers. The first is selection sort, which we saw
in Section 12.2. Here is the pseudocode we used there.

selectionsort (array) {

for (int i=0; i<array.length; i++) {

// find the lowest item at or to the right of i

// swap the ith item and the lowest item

}

}

To perform the operations specified in the pseudocode, we wrote helper methods
named findLowest and swap. In pseudocode, findLowest looks like this

18.2 Performance analysis 189

// find the index of the lowest item between

// i and the end of the array

findLowest (array, i) {

// lowest contains the index of the lowest item so far

lowest = i;

for (int j=i+1; j<array.length; j++) {

// compare the jth item to the lowest item so far

// if the jth item is lower, replace lowest with j

}

return lowest;

}

And swap looks like this:

swap (i, j) {

// store a reference to the ith card in temp

// make the ith element of the array refer to the jth card

// make the jth element of the array refer to temp

}

To analyze the performance of this algorithm, the first step is to decide what
operations to count. Obviously, the program does a lot of things: it increments
i, compares it to the length of the deck, it searches for the largest element of
the array, etc. It is not obvious what the right thing is to count.

It turns out that a good choice is the number of times we compare two items.
Many other choices would yield the same result in the end, but this is easy to
do and we will find that it allows us to compare most easily with other sort
algorithms.

The next step is to define the “problem size.” In this case it is natural to choose
the size of the array, which we’ll call n.

Finally, we would like to derive an expression that tells us how many abstract
operations (specifically, comparisons) we have to do, as a function of n.

We start by analyzing the helper methods. swap copies several references, but
it doesn’t perform any comparisons, so we ignore the time spent performing
swaps. findLowest starts at i and traverses the array, comparing each item
to lowest. The number of items we look at is n − i, so the total number of
comparisons is n − i − 1.

Next we consider how many times findLowest gets invoked and what the value
of i is each time. The last time it is invoked, i is n − 2 so the number of
comparisons is 1. The previous iteration performs 2 comparisons, and so on.
During the first iteration, i is 0 and the number of comparisons is n − 1.

So the total number of comparisons is 1 + 2 + · · · + n − 1. This sum is equal
to n2/2 − n/2. To describe this algorithm, we would typically ignore the lower
order term (n/2) and say that the total amount of work is proportional to n2.
Since the leading order term is quadratic, we might also say that this algorithm
is quadratic time.

190 Heap

18.3 Analysis of mergesort

In Section 12.5 I claimed that mergesort takes time that is proportional to
n log n, but I didn’t explain how or why. Now I will.

Again, we start by looking at pseudocode for the algorithm. For mergesort, it’s

mergeSort (array) {

// find the midpoint of the array

// divide the array into two halves

// sort the halves recursively

// merge the two halves and return the result

}

At each level of the recursion, we split the array in half, make two recursive
calls, and then merge the halves. Graphically, the process looks like this:

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

n

2

1

n/2

merges# arrays
items per comparisons

per mergearray total work

2−1

0

~n

1

2

n

n/2

1

2

n−1

n/2−1

~n

~n

n/2

0

Each line in the diagram is a level of the recursion. At the top, a single array
divides into two halves. At the bottom, n arrays (with one element each) are
merged into n/2 arrays (with 2 elements each).

The first two columns of the table show the number of arrays at each level and
the number of items in each array. The third column shows the number of
merges that take place at each level of recursion. The next column is the one
that takes the most thought: it shows the number of comparisons each merge
performs.

If you look at the pseudocode (or your implementation) of merge, you should
convince yourself that in the worst case it takes m− 1 comparisons, where m is
the total number items being merged.

The next step is to multiply the number of merges at each level by the amount
of work (comparisons) per merge. The result is the total work at each level. At
this point we take advantage of a small trick. We know that in the end we are
only interested in the leading-order term in the result, so we can go ahead and
ignore the −1 term in the comparisons per merge. If we do that, then the total
work at each level is simply n.

Next we need to know the number of levels as a function of n. Well, we start
with an array of n items and divide it in half until it gets to 1. That’s the same
as starting at 1 and multiplying by 2 until we get to n. In other words, we want

18.4 Overhead 191

to know how many times we have to multiply 2 by itself before we get to n. The
answer is that the number of levels, l, is the logarithm, base 2, of n.

Finally, we multiply the amount of work per level, n, by the number of levels,
log2 n to get n log2 n, as promised. There isn’t a good name for this functional
form; most of the time people just say, “en log en.”

It might not be obvious at first that n log2 n is better than n2, but for large
values of n, it is. As an exercise, write a program that prints n log2 n and n2

for a range of values of n.

18.4 Overhead

Performance analysis takes a lot of handwaving. First we ignored most of the
operations the program performs and counted only comparisons. Then we de-
cided to consider only worst case performance. During the analysis we took the
liberty of rounding a few things off, and when we finished, we casually discarded
the lower-order terms.

When we interpret the results of this analysis, we have to keep all this hand-
waving in mind. Because mergesort is n log2 n, we consider it a better algorithm
than selection sort, but that doesn’t mean that mergesort is always faster. It
just means that eventually, if we sort bigger and bigger arrays, mergesort will
win.

How long that takes depends on the details of the implementation, including
the additional work, besides the comparisons we counted, that each algorithm
performs. This extra work is sometimes called overhead. It doesn’t affect the
performance analysis, but it does affect the run time of the algorithm.

For example, our implementation of mergesort actually allocates subarrays be-
fore making the recursive calls and then lets them get garbage collected after
they are merged. Looking again at the diagram of mergesort, we can see that
the total amount of space that gets allocated is proportional to n log2 n, and
the total number of objects that get allocated is about 2n. All that allocating
takes time.

Even so, it is most often true that a bad implementation of a good algorithm
is better than a good implementation of a bad algorithm. The reason is that
for large values of n the good algorithm is better and for small values of n it
doesn’t matter because both algorithms are good enough.

As an exercise, write a program that prints values of 1000n log2 n and n2 for a
range of values of n. For what value of n are they equal?

18.5 Priority Queue implementations

In Chapter 16 we looked at an implementation of a Priority Queue based on an
array. The items in the array are unsorted, so it is easy to add a new item (at

192 Heap

the end), but harder to remove an item, because we have to search for the item
with the highest priority.

An alternative is an implementation based on a sorted list. In this case when
we insert a new item we traverse the list and put the new item in the right spot.
This implementation takes advantage of a property of lists, which is that it is
easy to insert a new node into the middle. Similarly, removing the item with
the highest priority is easy, provided that we keep it at the beginning of the list.

Performance analysis of these operations is straightforward. Adding an item to
the end of an array or removing a node from the beginning of a list takes the
same amount of time regardless of the number of items. So both operations are
constant time.

Any time we traverse an array or list, performing a constant-time operation
on each element, the run time is proportional to the number of items. Thus,
removing something from the array and adding something to the list are both
linear time.

So how long does it take to insert and then remove n items from a Priority
Queue? For the array implementation, n insertions takes time proportional to
n, but the removals take longer. The first removal has to traverse all n items;
the second has to traverse n − 1, and so on, until the last removal, which only
has to look at 1 item. Thus, the total time is 1 + 2 + · · · + n, which is (still)
n2/2−n/2. So the total for the insertions and the removals is the sum of a linear
function and a quadratic function. The leading term of the result is quadratic.

The analysis of the list implementation is similar. The first insertion doesn’t
require any traversal, but after that we have to traverse at least part of the list
each time we insert a new item. In general we don’t know how much of the list
we will have to traverse, since it depends on the data and what order they are
inserted, but we can assume that on average we have to traverse half of the list.
Unfortunately, even traversing half of the list is still a linear operation.

So, once again, to insert and remove n items takes time proportional to n2.
Thus, based on this analysis we cannot say which implementation is better;
both the array and the list yield quadratic run times.

If we implement a Priority Queue using a heap, we can perform both insertions
and removals in time proportional to logn. Thus the total time for n items is
n log n, which is better than n2. That’s why, at the beginning of the chapter, I
said that a heap is a particularly efficient implementation of a Priority Queue.

18.6 Definition of a Heap

A heap is a special kind of tree. It has two properties that are not generally
true for other trees:

completeness: The tree is complete, which means that nodes are added from
top to bottom, left to right, without leaving any spaces.

18.6 Definition of a Heap 193

heapness: The item in the tree with the highest priority is at the top of the
tree, and the same is true for every subtree.

Both of these properties call for a little explaining. This figure shows a number
of trees that are considered complete or not complete:

Complete trees Not complete trees

An empty tree is also considered complete. We can define completeness more
rigorously by comparing the height of the subtrees. Recall that the height of a
tree is the number of levels.

Starting at the root, if the tree is complete, then the height of the left subtree
and the height of the right subtree should be equal, or the left subtree may be
taller by one. In any other case, the tree cannot be complete.

Furthermore, if the tree is complete, then the height relationship between the
subtrees has to be true for every node in the tree.

It is natural to write these rules as a recursive method:

public static boolean isComplete (Tree tree) {

// the null tree is complete

if (tree == null) return true;

int leftHeight = height (tree.left);

int rightHeight = height (tree.right);

int diff = leftHeight - rightHeight;

// check the root node

if (diff < 0 || diff > 1) return false;

// check the children

if (!isComplete (tree.left)) return false;

return isComplete (tree.right);

}

194 Heap

For this example I used the linked implementation of a tree. As an exercise,
write the same method for the array implementation. Also as an exercise, write
the height method. The height of a null tree is 0 and the height of a leaf node
is 1.

The heap property is similarly recursive. In order for a tree to be a heap, the
largest value in the tree has to be at the root, and the same has to be true for
each subtree. As another exercise, write a method that checks whether a tree
has the heap property.

18.7 Heap remove

It might seem odd that we are going to remove things from the heap before we
insert any, but I think removal is easier to explain.

At first glance, we might think that removing an item from the heap is a constant
time operation, since the item with the highest priority is always at the root.
The problem is that once we remove the root node, we are left with something
that is no longer a heap. Before we can return the result, we have to restore the
heap property. We call this operation reheapify.

The situation is shown in the following figure:

a b

r

Subtree A

a

Subtree B

The root node has priority r and two subtrees, A and B. The value at the root
of Subtree A is a and the value at the root of Subtree B is b.

We assume that before we remove r from the tree, the tree is a heap. That
implies that r is the largest value in the heap and that a and b are the largest
values in their respective subtrees.

Once we remove r, we have to make the resulting tree a heap again. In other
words we need to make sure it has the properties of completeness and heapness.

The best way to ensure completeness is to remove the bottom-most, right-
most node, which we’ll call c and put its value at the root. In a general tree
implementation, we would have to traverse the tree to find this node, but in the

18.8 Heap insert 195

array implementation, we can find it in constant time because it is always the
last (non-null) element of the array.

Of course, the chances are that the last value is not the highest, so putting it
at the root breaks the heapness property. Fortunately it is easy to restore. We
know that the largest value in the heap is either a or b. Therefore we can select
whichever is larger and swap it with the value at the root.

Arbitrarily, let’s say that b is larger. Since we know it is the highest value left
in the heap, we can put it at the root and put c at the top of Subtree B. Now
the situation looks like this:

Subtree A Subtree B

b

a c

Again, c is the value we copied from the last entry in the array and b is the
highest value left in the heap. Since we haven’t changed Subtree A at all, we
know that it is still a heap. The only problem is that we don’t know if Subtree
B is a heap, since we just stuck a (probably low) value at its root.

Wouldn’t it be nice if we had a method that could reheapify Subtree B? Wait...
we do!

18.8 Heap insert

Inserting a new item in a heap is a similar operation, except that instead of
trickling a value down from the top, we trickle it up from the bottom.

Again, to guarantee completeness, we add the new element at the bottom-most,
rightmost position in the tree, which is the next available space in the array.

Then to restore the heap property, we compare the new value with its neighbors.
The situation looks like this:

196 Heap

lb

a

c

The new value is c. We can restore the heap property of this subtree by com-
paring c to a. If c is smaller, then the heap property is satisfied. If c is larger,
then we swap c and a. The swap satisfies the heap property because we know
that c must also be bigger than b, because c > a and a > b.

Now that the subtree is reheapified, we can work our way up the tree until we
reach the root.

18.9 Performance of heaps

For both insert and remove, we perform a constant time operation to do the
actual insertion and removal, but then we have to reheapify the tree. In one
case we start at the root and work our way down, comparing items and then
recursively reheapifying one of the subtrees. In the other case we start at a leaf
and work our way up, again comparing elements at each level of the tree.

As usual, there are several operations we might want to count, like comparisons
and swaps. Either choice would work; the real issue is the number of levels of
the tree we examine and how much work we do at each level. In both cases
we keep examining levels of the tree until we restore the heap property, which
means we might only visit one, or in the worst case we might have to visit them
all. Let’s consider the worst case.

At each level, we perform only constant time operations like comparisons and
swaps. So the total amount of work is proportional to the number of levels in
the tree, a.k.a. the height.

So we might say that these operations are linear with respect to the height of the
tree, but the “problem size” we are interested in is not height, it’s the number
of items in the heap.

As a function of n, the height of the tree is log2n. This is not true for all trees,
but it is true for complete trees. To see why, think of the number of nodes on
each level of the tree. The first level contains 1, the second contains 2, the third
contains 4, and so on. The ith level contains 2i nodes, and the total number in
all levels up to i is 2i − 1. In other words, 2h = n, which means that h = log2n.

18.10 Heapsort 197

Thus, both insertion and removal take logarithmic time. To insert and remove
n items takes time proportional to n log2 n.

18.10 Heapsort

The result of the previous section suggests yet another algorithm for sorting.
Given n items, we insert them into a Heap and then remove them. Because of
the Heap semantics, they come out in order. We have already shown that this
algorithm, which is called heapsort, takes time proportional to n log2 n, which
is better than selection sort and the same as mergesort.

As the value of n gets large, we expect heapsort to be faster than selection
sort, but performance analysis gives us no way to know whether it will be faster
than mergesort. We would say that the two algorithms have the same order of
growth because they grow with the same functional form. Another way to say
the same thing is that they belong to the same complexity class.

Complexity classes are sometimes written in “big-O notation”. For example,
O(n2), pronounced “oh of en squared” is the set of all functions that grow no
faster than n2 for large values of n. To say that an algorithm is O(n2) is the
same as saying that it is quadratic. The other complexity classes we have seen,
in decreasing order of performance, are:

O(1) constant time
O(log n) logarithmic
O(n) linear
O(n log n) “en log en”
O(n2) quadratic
O(2n) exponential

So far none of the algorithms we have looked at are exponential. For large
values of n, these algorithms quickly become impractical. Nevertheless, the
phrase “exponential growth” appears frequently in even non-technical language.
It is frequently misused so I wanted to include its technical meaning.

People often use “exponential” to describe any curve that is increasing and
accelerating (that is, one that has positive slope and curvature). Of course, there
are many other curves that fit this description, including quadratic functions
(and higher-order polynomials) and even functions as undramatic as n log n.
Most of these curves do not have the (often detrimental) explosive behavior of
exponentials.

As an exercise, compare the behavior of 1000n2 and 2n as the value of n in-
creases.

198 Heap

18.11 Glossary

selection sort: The simple sorting algorithm in Section 12.2.

mergesort: A better sorting algorithm from Section 12.5.

heapsort: Yet another sorting algorithm.

complexity class: A set of algorithms whose performance (usually run time)
has the same order of growth.

order of growth: A set of functions with the same leading-order term, and
therefore the same qualitative behavior for large values of n.

overhead: Additional time or resources consumed by a programming perform-
ing operations other than the abstract operations considered in perfor-
mance analysis.

Chapter 19

Table

19.1 Arrays, Vectors and Tables

Arrays are a generally useful data structure, but they suffer from two important
limitations:

• The size of the array does not depend on the number of items in it. If the
array is too big, it wastes space. If it is too small it might cause an error,
or we might have to write code to resize it.

• Although the array can contain any type of item, the indices of the array
have to be integers. We cannot, for example, use a String to specify an
element of an array.

In Section 17.10 we saw how the built-in Vector class solves the first problem.
As the user adds items it expands automatically. It is also possible to shrink a
Vector so that the capacity is the same as the current size.

But Vectors don’t help with the second problem. The indices are still integers.

That’s where the Table ADT comes in. The Table is a generalization of the
Vector that can use any type as an index. These generalized indices are called
keys.

Just as you would use an index to access a value in an array, you use a key to
access a value in a Table. So each key is associated with a value, which is why
Tables are sometimes called associative arrays.

A common example of a table is a dictionary, which is a table that associates
words (the keys) with their definitions (the values). Because of this example Ta-
bles are also sometimes called Dictionaries. Also, the association of a particular
key with a particular value is called an entry.

200 Table

19.2 The Table ADT

Like the other ADTs we have looked at, Tables are defined by the set of opera-
tions they support:

constructor: Make a new, empty table.

put: Create an entry that associates a value with a key.

get: For a given key, find the corresponding value.

containsKey: Return true if there is an entry in the Table with the given Key.

keys : Return a collection that contains all the keys in the Table.

19.3 The built-in Hashtable

Java provides an implementation of the Table ADT called Hashtable. It is
in the java.util package. Later in the chapter we’ll see why it is called
Hashtable.

To demonstrate the use of the Hashtable we’ll write a short program that
traverses a String and counts the number of times each word appears.

We’ll create a new class called WordCount that will build the Table and then
print its contents. Naturally, each WordCount object contains a Hashtable:

public class WordCount {

Hashtable ht;

public WordCount () {

ht = new Hashtable ();

}

}

The only public methods for WordCount are processLine, which takes a String
and adds its words to the Table, and print, which prints the results at the end.

processLine breaks the String into words using a StringTokenizer and passes
each word to processWord.

public void processLine (String s) {

StringTokenizer st = new StringTokenizer (s, " ,.");

while (st.hasMoreTokens()) {

String word = st.nextToken();

processWord (word.toLowerCase ());

}

}

The interesting work is in processWord.

19.3 The built-in Hashtable 201

public void processWord (String word) {

if (ht.containsKey (word)) {

Integer i = (Integer) ht.get (word);

Integer j = new Integer (i.intValue() + 1);

ht.put (word, j);

} else {

ht.put (word, new Integer (1));

}

}

If the word is already in the table, we get its counter, increment it, and put the
new value. Otherwise, we just put a new entry in the table with the counter
set to 1.

To print the entries in the table, we need to be able to traverse the keys in the
table. Fortunately, the Hashtable implementation provides a method, keys,
that returns an Enumeration object we can use. Enumerations are very similar
to the Iterators we saw in Section 17.11. Both are abstract classes in the
java.util package; you should review the documentation of both. Here’s how
to use keys to print the contents of the Hashtable:

public void print () {

Enumeration enum = ht.keys ();

while (enum.hasMoreElements ()) {

String key = (String) enum.nextElement ();

Integer value = (Integer) ht.get (key);

System.out.println ("{ " + key + ", " + value + " }");

}

}

Each of the elements of the Enumeration is an Object, but since we know they
are keys, we typecast them to be Strings. When we get the values from the
Table, they are also Objects, but we know they are counters, so we typecast
them to be Integers.

Finally, to count the words in a string:

WordCount wc = new WordCount ();

wc.processLine ("da doo ron ron ron, da doo ron ron");

wc.print ();

The output is

{ ron, 5 }

{ doo, 2 }

{ da, 2 }

The elements of the Enumeration are not in any particular order. The only
guarantee is that all the keys in the table will appear.

202 Table

19.4 A Vector implementation

An easy way to implement the Table ADT is to use a Vector of entries, where
each entry is an object that contains a key and a value. These objects are called
key-value pairs.

A class definition for a KeyValuePair might look like this:

class KeyValuePair {

Object key, value;

public KeyValuePair (Object key, Object value) {

this.key = key;

this.value = value;

}

public String toString () {

return "{ " + key + ", " + value + " }";

}

}

Then the implementation of Table looks like this:

public class Table {

Vector v;

public Table () {

v = new Vector ();

}

}

To put a new entry in the table, we just add a new KeyValuePair to the Vector:

public void put (Object key, Object value) {

KeyValuePair pair = new KeyValuePair (key, value);

v.add (pair);

}

Then to look up a key in the Table we have to traverse the Vector and find a
KeyValuePair with a matching key:

public Object get (Object key) {

Iterator iterator = v.iterator ();

while (iterator.hasNext ()) {

KeyValuePair pair = (KeyValuePair) iterator.next ();

if (key.equals (pair.key)) {

return pair.value;

}

}

return null;

}

The idiom to traverse a Vector is the one we saw in Section 17.11. When we
compare keys, we use deep equality (the equals method) rather than shallow

19.4 A Vector implementation 203

equality (the == operator). This allows the key class to specify the definition of
equality. In our example, the keys are Strings, so it will use the built-in equals

method in the String class.

For most of the built-in classes, the equals method implements deep equality.
For some classes, though, it is not easy to define what that means. For example,
see the documentation of equals for Doubles.

Because equals is an object method, this implementation of get does not work
if key is null. We could handle null as a special case, or we could do what the
build-in Hashtable does—simply declare that null is not a legal key.

Speaking of the built-in Hashtable, it’s implementation of put is a bit different
from ours. If there is already an entry in the table with the given key, put

updates it (give it a new value), and returns the old value (or null if there was
none. Here is an implementation of their version:

public Object put (Object key, Object value) {

Object result = get (key);

if (result == null) {

KeyValuePair pair = new KeyValuePair (key, value);

v.add (pair);

} else {

update (key, value);

}

return result;

}

The update method is not part of the Table ADT, so it is declared private. It
traverses the vector until it finds the right KeyValuePair and then it updates
the value field. Notice that we don’t have to modify the Vector itself, just one
of the objects it contains.

private void update (Object key, Object value) {

Iterator iterator = v.iterator ();

while (iterator.hasNext ()) {

KeyValuePair pair = (KeyValuePair) iterator.next ();

if (key.equals (pair.key)) {

pair.value = value;

break;

}

}

}

The only methods we haven’t implemented are containsKey and keys. The
containsKey method is almost identical to get except that it returns true or
false instead of an object reference or null.

As an exercise, implement keys by building a Vector of keys and returning the
elements of the vector. See the documentation of elements in the Vector class
for more information.

204 Table

19.5 The List abstract class

The java.util package defines an abstract class called List that specifies the
set of operations a class has to implement in order to be considered (very ab-
stractly) a list. This does not mean, of course, that every class that implements
List has to be a linked list.

Not surprisingly, the built-in LinkedList class is a member of the List abstract
class. Surprisingly, so is Vector.

The methods in the List definition include add, get and iterator. In fact, all
the methods from the Vector class that we used to implement Table are defined
in the List abstract class.

That means that instead of a Vector, we could have used any List class. In
Table.java we can replace Vector with LinkedList, and the program still
works!

This kind of type generality can be useful for tuning the performance of a
program. You can write the program in terms of an abstract class like List

and then test the program with several different implementations to see which
yields the best performance.

19.6 Hash table implementation

The reason that the built-in implementation of the Table ADT is called
Hashtable is that it uses a particularly efficient implementation of a Table
called a hashtable.

Of course, the whole point of defining an ADT is that it allows us to use an
implementation without knowing the details. So it is probably a bad thing
that the people who wrote the Java library named this class according to its
implementation rather than its ADT, but I suppose of all the bad things they
did, this one is pretty small.

Anyhoo, you might be wondering what a hashtable is, and why I say it is
particularly efficient. We’ll start by analyzing the performance of the List

implementation we just did.

Looking at the implementation of put, we see that there are two cases. If the
key is not already in the table, then we only have to create a new key-value pair
and add it to the List. Both of these are constant-time operations.

In the other case, we have to traverse the List to find the existing key-value
pair. That’s a linear time operation. For the same reason, get and containsKey

are also linear.

Although linear operations are often good enough, we can do better. It turns
out that there is a way to implement the Table ADT so that both put and get

are constant time operations!

19.7 Hash Functions 205

The key is to realize that traversing a list takes time proportional to the length
of the list. If we can put an upper bound on the length of the list, then we
can put an upper bound on the traverse time, and anything with a fixed upper
bound is considered constant time.

But how can we limit the length of the lists without limiting the number of
items in the table? By increasing the number of lists. Instead of one long list,
we’ll keep many short lists.

As long as we know which list to search, we can put a bound on the amount of
searching.

19.7 Hash Functions

And that’s where hash functions come in. We need some way to look at a key
and know, without searching, which list it will be in. We’ll assume that the lists
are in an array (or Vector) so we can refer to them by index.

The solution is to come up with some mapping—almost any mapping—between
the key values and the indices of the lists. For every possible key there has to
be a single index, but there might be many keys that map to the same index.

For example, imagine an array of 8 lists and a table made up of keys that
are Integers and values that are Strings. It might be tempting to use the
intValue of the Integers as indices, since they are the right type, but there
are a whole lot of integers that do not fall between 0 and 7, which are the only
legal indices.

The modulus operator provides a simple (in terms of code) and efficient (in terms
of run time) way to map all the integers into the range (0, 7). The expression

key.intValue() % 8

is guaranteed to produce a value in the range from -7 to 7 (including both). If
you take its absolute value (using Math.abs) you will get a legal index.

For other types, we can play similar games. For example, to convert a Character
to an integer, we can use the built-in method Character.getNumericValue and
for Doubles there is intValue.

For Strings we could get the numeric value of each character and add them up,
or instead we might use a shifted sum. To calculate a shifted sum, alternate
between adding new values to the accumulator and shifting the accumulator to
the left. By “shift to the left” I mean “multiply by a constant.”

To see how this works, take the list of numbers 1, 2, 3, 4, 5, 6 and compute their
shifted sum as follows. First, initialize the accumulator to 0. Then,

1. Multiply the accumulator by 10.

2. Add the next element of the list to the accumulator.

206 Table

3. Repeat until the list is finished.

As an exercise, write a method that calculates the shifted sum of the numeric
values of the characters in a String using a multiplier of 32.

For each type, we can come up with a function that takes values of that type
and generates a corresponding integer value. These functions are called hash
functions, because they often involve making a hash of the components of the
object. The integer value for each object is called its hash code.

There is one other way we might generate a hash code for Java objects. Every
Java object provides a method called hashCode that returns an integer that
corresponds to that object. For the built-in types, the hashCode method is
implemented so that if two objects contain the same data, they will have the
same hash code (as in deep equality). The documentation of these methods
explains what the hash function is. You should check them out.

For user-defined types, it is up to the implementor to provide an appropriate
hash function. The default hash function, provided in the Object class, often
uses the location of the object to generate a hash code, so its notion of “same-
ness” is shallow equality. Most often when we are searching a hash table for a
key, shallow equality is not what we want.

Regardless of how the hash code is generated, the last step is to use modulus
and absolute value to map the hash code into the range of legal indices.

19.8 Resizing a hash table

Let’s review. A Hash table consists of an array (or Vector) of Lists, where
each List contains a small number of key-value pairs. To add a new entry to
a table, we calculate the hash code of the new key and add the entry to the
corresponding List.

To look up a key, we hash it again and search the corresponding list. If the
lengths of the lists are bounded then the search time is bounded.

So how do we keep the lists short? Well, one goal is to keep them as balanced
as possible, so that there are no very long lists at the same time that others are
empty. This is not easy to do perfectly—it depends on how well we chose the
hash function—but we can usually do a pretty good job.

Even with perfect balance, the average list length grows linearly with the number
of entries, and we have to put a stop to that.

The solution is to keep track of the average number of entries per list, which is
called the load factor; if the load factor gets too high, we have to resize the
table.

To resize, we create a new table, usually twice as big as the original, take all
the entries out of the old one, hash them again, and put them in the new table.
Usually we can get away with using the same hash function; we just use a
different value for the modulus operator.

19.9 Performance of resizing 207

19.9 Performance of resizing

How long does it take to resize the table? Clearly it is linear with the number
of entries. That means that most of the time put takes constant time, but every
once in a while —when we resize—it takes linear time.

At first that sounds bad. Doesn’t that undermine my claim that we can perform
put in constant time? Well, frankly, yes. But with a little wheedling, I can fix
it.

Since some put operations take longer than others, let’s figure out the average

time for a put operation. The average is going to be c, the constant time for a
simple put, plus an additional term of p, the percentage of the time I have to
resize, times kn, the cost of resizing.

t(n) = c + p · kn (19.1)

I don’t know what c and k are, but we can figure out what p is. Imagine that
we have just resized the hash table by doubling its size. If there are n entries,
then we can add an addition n entries before we have to resize again. So the
percentage of the time we have to resize is 1/n.

Plugging into the equation, we get

t(n) = c + 1/n · kn = c + k (19.2)

In other words, t(n) is constant time!

19.10 Glossary

table: An ADT that defines operations on a collection of entries.

entry: An element in a table that contains a key-value pair.

key: An index, of any type, used to look up values in a table.

value: An element, of any type, stored in a table.

dictionary: Another name for a table.

associative array: Another name for a dictionary.

hash table: A particularly efficient implementation of a table.

hash function: A function that maps values of a certain type onto integers.

hash code: The integer value that corresponds to a given value.

shifted sum: A simple hash function often used for compounds objects like
Strings.

load factor: The number of entries in a hashtable divided by the number of
lists in the hashtable; i.e. the average number of entries per list.

Appendix A

Program development plan

If you are spending a lot of time debugging, it is probably because you do not
have an effective program development plan.

A typical, bad program development plan goes something like this:

1. Write an entire method.

2. Write several more methods.

3. Try to compile the program.

4. Spend an hour finding syntax errors.

5. Spend an hour finding run time errors.

6. Spend three hours finding semantic errors.

The problem, of course, is the first two steps. If you write more than one
method, or even an entire method, before you start the debugging process, you
are likely to write more code than you can debug.

If you find yourself in this situation, the only solution is to remove code until you
have a working program again, and then gradually build the program back up.
Beginning programmers are often unwilling to do this, because their carefully
crafted code is precious to them. To debug effectively, you have to be ruthless!

Here is a better program development plan:

1. Start with a working program that does something visible, like printing
something.

2. Add a small number of lines of code at a time, and test the program after
every change.

3. Repeat until the program does what it is supposed to do.

210 Program development plan

After every change, the program should produce some visible effect that demon-
strates the new code. This approach to programming can save a lot of time.
Because you only add a few lines of code at a time, it is easy to find syntax
errors. Also, because each version of the program produces a visible result, you
are constantly testing your mental model of how the program works. If your
mental model is erroneous, you will be confronted with the conflict (and have a
chance to correct it) before you have written a lot of erroneous code.

One problem with this approach is that it is often difficult to figure out a path
from the starting place to a complete and correct program.

I will demonstrate by developing a method called isIn that takes a String and
a Vector, and that returns a boolean: true if the String appears in the list and
false otherwise.

1. The first step is to write the shortest possible method that will compile,
run, and do something visible:

public static boolean isIn (String word, Vector v) {

System.out.println ("isIn");

return false;

}

Of course, to test the method we have to invoke it. In main, or somewhere
else in a working program, we need to create a simple test case.

We’ll start with a case where the String appears in the vector (so we expect
the result to be true).

public static void main (String[] args) {

Vector v = new Vector ();

v.add ("banana");

boolean test = isIn ("banana", v);

System.out.println (test);

}

If everything goes according to plan, this code will compile, run, and print
the word isIn and the value false. Of course, the answer isn’t correct,
but at this point we know that the method is getting invoked and returning
a value.

In my programming career, I have wasted way too much time debugging a
method, only to discover that it was never getting invoked. If I had used
this development plan, it never would have happened.

2. The next step is to check the parameters the method receives.

public static boolean isIn (String word, Vector v) {

System.out.println ("isIn looking for " + word);

System.out.println ("in the vector " + v);

return false;

}

211

The first print statement allows us to confirm that isIn is looking for
the right word. The second statement prints a list of the elements in the
vector.

To make things more interesting, we might add a few more elements to
the vector:

public static void main (String[] args) {

Vector v = new Vector ();

v.add ("apple");

v.add ("banana");

v.add ("grapefruit");

boolean test = isIn ("banana", v);

System.out.println (test);

}

Now the output looks like this:

isIn looking for banana

in the vector [apple, banana, grapefruit]

Printing the parameters might seem silly, since we know what they are
supposed to be. The point is to confirm that they are what we think they
are.

3. To traverse the vector, we can take advantage of the code from Sec-
tion 17.10. In general, it is a great idea to reuse code fragments rather
than writing them from scratch.

public static boolean isIn (String word, Vector v) {

System.out.println ("isIn looking for " + word);

System.out.println ("in the vector " + v);

for (int i=0; i<v.size(); i++) {

System.out.println (v.get(i));

}

return false;

}

Now when we run the program it prints the elements of the vector one
at a time. If all goes well, we can confirm that the loop examines all the
elements of the vector.

4. So far we haven’t given much thought to what this method is going to do.
At this point we probably need to figure out an algorithm. The simplest
algorithm is a linear search, which traverses the vector and compares each
element to the target word.

Happily, we have already written the code that traverses the vector. As
usual, we’ll proceed by adding just a few lines at a time:

212 Program development plan

public static boolean isIn (String word, Vector v) {

System.out.println ("isIn looking for " + word);

System.out.println ("in the vector " + v);

for (int i=0; i<v.size(); i++) {

System.out.println (v.get(i));

String s = (String) v.get(i);

if (word.equals (s)) {

System.out.println ("found it");

}

}

return false;

}

As always, we use the equals method to compare Strings, not the ==

operator!

Again, I added a print statement so that when the new code executes it
produces a visible effect.

5. At this point we are pretty close to working code. The next change is to
return from the method if we find what we are looking for:

public static boolean isIn (String word, Vector v) {

System.out.println ("isIn looking for " + word);

System.out.println ("in the vector " + v);

for (int i=0; i<v.size(); i++) {

System.out.println (v.get(i));

String s = (String) v.get(i);

if (word.equals (s)) {

System.out.println ("found it");

return true;

}

}

return false;

}

If we find the target word, we return true. If we get all the way through
the loop without finding it, then the correct return value is false.

If we run the program at this point, we should get

isIn looking for banana

in the vector [apple, banana, grapefruit]

apple

banana

found it

true

213

6. The next step is to make sure that the other test cases work correctly.
First, we should confirm that the method returns false if the word in not
in the vector.

Then we should check some of the typical troublemakers, like an empty
vector (one with size 0) and a vector with a single element. Also, we might
try giving the method an empty String.

As always, this kind of testing can help find bugs if there are any, but it
can’t tell you if the method is correct.

7. The penultimate step is to remove or comment out the print statements.

public static boolean isIn (String word, Vector v) {

for (int i=0; i<v.size(); i++) {

System.out.println (v.get(i));

String s = (String) v.get(i);

if (word.equals (s)) {

return true;

}

}

return false;

}

Commenting out the print statements is a good idea if you think you
might have to revisit this method later. But if this is the final version of
the method, and you are convinced that it is correct, you should remove
them.

Removing the comments allows you to see the code most clearly, which
can help you spot any remaining problems.

If there is anything about the code that is not obvious, you should add
comments to explain it. Resist the temptation to translate the code line
by line. For example, no one needs this:

// if word equals s, return true

if (word.equals (s)) {

return true;

}

You should use comments to explain non-obvious code, to warn about
conditions that could cause errors, and to document any assumptions that
are built into the code. Also, before each method, it is a good idea to write
an abstract description of what the method does.

8. The final step is to examine the code and see if you can convince yourself
that it is correct.

At this point we know that the method is syntactically correct, because it
compiles.

To check for run time errors, you should find every statement that can
cause an error and figure out what conditions cause the error.

214 Program development plan

The statements in this method that can produce a run time error are:

v.size() if v is null.
word.equals (s) if word is null.
(String) v.get(i) if v is null or i is out of bounds,

or the ith element of v is not a String.

Since we get v and word as parameters, there is no way to avoid the first
two conditions. The best we can do is check for them.

public static boolean isIn (String word, Vector v) {

if (v == null || word == null) return false;

for (int i=0; i<v.size(); i++) {

System.out.println (v.get(i));

String s = (String) v.get(i);

if (word.equals (s)) {

return true;

}

}

return false;

}

In general, it is a good idea for methods to make sure their parameters
are legal.

The structure of the for loop ensures that i is always between 0 and
v.size()-1. But there is no way to ensure that the elements of v are
Strings. On the other hand, we can check them as we go along. The
instanceof operator checks whether an object belongs to a class.

Object obj = v.get(i);

if (obj instanceof String) {

String s = (String) v.get(i);

}

This code gets an object from the vector and checks whether it is a String.
If it is, it performs the typecast and assigns the String to s.

As an exercise, modify isIn so that if it finds an element in the vector
that is not a String, it skips to the next element.

If we handle all the problem conditions, we can prove that this method
will not cause a run time error.

We haven’t proven yet that the method is semantically correct, but by
proceeding incrementally, we have avoided many possible errors. For ex-
ample, we already know that the method is getting parameters correctly
and that the loop traverses the entire vector. We also know that it is
comparing Strings successfully, and returning true if it finds the target
word. Finally, we know that if the loop exists, the target word cannot be
in the vector.

Short of a formal proof, that is probably the best we can do.

Appendix B

Debugging

There are a few different kinds of errors that can occur in a program, and it is
useful to distinguish between them in order to track them down more quickly.

• Compile-time errors are produced by the compiler and usually indicate
that there is something wrong with the syntax of the program. Example:
omitting the semi-colon at the end of a statement.

• Run-time errors are produced by the run-time system if something goes
wrong while the program is running. Most run-time errors are Exceptions.
Example: an infinite recursion eventually causes a StackOverflowExcep-
tion.

• Semantic errors are problems with a program that compiles and runs, but
doesn’t do the right thing. Example: an expression may not be evaluated
in the order you expect, yielding an unexpected result.

The first step in debugging is to figure out which kind of error you are dealing
with. Although the following sections are organized by error type, there are
some techniques that are applicable in more than one situation.

B.1 Compile-time errors

The compiler is spewing error messages.

If the compiler reports 100 error messages, that doesn’t mean there are 100
errors in your program. When the compiler encounters an error, it gets thrown
off track for a while. It tries to recover and pick up again after the first error,
but sometimes it fails, and it reports spurious errors.

In general, only the first error message is reliable. I suggest that you only fix one
error at a time, and then recompile the program. You may find that one semi-
colon “fixes” 100 errors. Of course, if you see several legitimate error messages,
you might as well fix more than one bug per compilation attempt.

216 Debugging

I’m getting a weird compiler message and it won’t go away.

First of all, read the error message carefully. It is written in terse jargon, but
often there is a kernel of information there that is carefully hidden.

If nothing else, the message will tell you where in the program the problem oc-
curred. Actually, it tells you where the compiler was when it noticed a problem,
which is not necessarily where the error is. Use the information the compiler
gives you as a guideline, but if you don’t see an error where the compiler is
pointing, broaden the search.

Generally the error will be prior to the location of the error message, but there
are cases where it will be somewhere else entirely. For example, if you get an
error message at a method invocation, the actual error may be in the method
definition.

If you are building the program incrementally, you should have a good idea
about where the error is. It will be in the last line you added.

If you are copying code from a book, start by comparing your code to the book’s
code very carefully. Check every character. At the same time, remember that
the book might be wrong, so if you see something that looks like a syntax error,
it might be.

If you don’t find the error quickly, take a breath and look more broadly at the
entire program. Now is a good time to go through the whole program and make
sure it is indented properly. I won’t say that good indentation makes it easy to
find syntax errors, but bad indentation sure makes it harder.

Now, start examining the code for the common syntax errors.

1. Check that all parentheses and brackets are balanced and properly nested.
All method definitions should be nested within a class definition. All
program statements should be within a method definition.

2. Remember that upper case letters are not the same as lower case letters.

3. Check for semi-colons at the end of statements (and no semi-colons after
squiggly-braces).

4. Make sure that any strings in the code have matching quotation marks
(and that you use double-quotes, not single).

5. For each assignment statement, make sure that the type on the left is the
same as the type on the right.

6. For each method invocation, make sure that the arguments you provide
are in the right order, and have right type, and that the object you are
invoking the method on is the right type.

7. If you are invoking a fruitful method, make sure you are doing something
with the result. If you are invoking a void method, make sure you are not
trying to do something with the result.

B.2 Run-time errors 217

8. If you are invoking an object method, make sure you are invoking it on
an object with the right type. If you are invoking a class method from
outside the class where it is defined, make sure you specify the class name.

9. Inside an object method you can refer to the instance variables without
specifying an object. If you try that in a class method, you will get a
confusing message like, “Static reference to non-static variable.”

If nothing works, move on to the next section...

I can’t get my program to compile no matter what I do.

If the compiler says there is an error and you don’t see it, that might be because
you and the compiler are not looking at the same code. Check your develop-
ment environment to make sure the program you are editing is the program the
compiler is compiling. If you are not sure, try putting an obvious and deliberate
syntax error right at the beginning of the program. Now compile again. If the
compiler doesn’t find the new error, there is probably something wrong with
the way you set up the project.

Otherwise, if you have examined the code thoroughly, it is time for desperate
measures. You should start over with a program that you can compile and then
gradually add your code back.

• Make a copy of the file you are working on. If you are working on
Fred.java, make a copy called Fred.java.old.

• Delete about half the code from Fred.java. Try compiling again.

– If the program compiles now, then you know the error is in the other
half. Bring back about half of the code you deleted and repeat.

– If the program still doesn’t compile, the error must be in this half.
Delete about half of the code and repeat.

• Once you have found and fixed the error, start bringing back the code you
deleted, a little bit at a time.

This process is called “debugging by bisection.” As an alternative, you can
comment out chunks of code instead of deleting them. For really sticky syntax
problems, though, I think deleting is more reliable—you don’t have to worry
about the syntax of the comments, and by making the program smaller you
make it more readable.

B.2 Run-time errors

My program hangs.

If a program stops and seems to be doing nothing, we say it is “hanging.” Often
that means that it is caught in an infinite loop or an infinite recursion.

218 Debugging

• If there is a particular loop that you suspect is the problem, add a print
statement immediately before the loop that says “entering the loop” and
another immediately after that says “exiting the loop.”

Run the program. If you get the first message and not the second, you’ve
got an infinite loop. Go to the section titled “Infinite loop.”

• Most of the time an infinite recursion will cause the program to run for
a while and then produce a StackOverflowException. If that happens, go
to the section titled “Infinite recursion.”

If you are not getting a StackOverflowException, but you suspect there is
a problem with a recursive method, you can still use the techniques in the
infinite recursion section.

• If neither of those things works, start testing other loops and other recur-
sive methods.

• If none of those things works, then it is possible that you don’t understand
the flow of execution in your program. Go to the section titled “Flow of
execution.”

Infinite loop

If you think you have an infinite loop and think you know what loop is causing
the problem, add a print statement at the end of the loop that prints the values
of the variables in the condition, and the value of the condition.

For example,

while (x > 0 && y < 0) {

// do something to x

// do something to y

System.out.println ("x: " + x);

System.out.println ("y: " + y);

System.out.println ("condition: " + (x > 0 && y < 0));

}

Now when you run the program you will see three lines of output for each time
through the loop. The last time through the loop, the condition should be
false. If the loops keeps going, you will be able to see the values of x and y

and you might figure out why they are not being updated correctly.

Infinite recursion

Most of the time an infinite recursion will cause the program to run for a while
and then produce a StackOverflowException.

If you suspect that method is causing an infinite recursion, start by checking
to make sure that there is a base case. In other words, there should be some

B.2 Run-time errors 219

condition that will cause the method to return without making a recursive
invocation. If not, then you need to rethink the algorithm and identify a base
case.

If there is a base case, but the program doesn’t seem to be reaching it, add
a print statement at the beginning of the method that prints the parameters.
Now when you run the program you will see a few lines of output every time
the method is invoked, and you will see the parameters. If the parameters are
not moving toward the base case, you will get some ideas about why not.

Flow of execution

If you are not sure how the flow of execution is moving through your program,
add print statements to the beginning of each method with a message like “en-
tering method foo,” where foo is the name of the method.

Now when you run the program it will print a trace of each method as it is
invoked.

It is often useful to print the parameters each method receives when it is invoked.
When you run the program, check whether the parameters are reasonable, and
check for one of the classic errors—providing parameters in the wrong order.

When I run the program I get an Exception.

If something goes wrong during run time, the Java run-time system prints a
message that includes the name of the exception, the line of the program where
the problem occurred, and a stack trace.

The stack trace includes the method that is currently running, and then the
method that invoked it, and then the method that invoked that, and so on. In
other words, it traces the path of method invocations that got you to where you
are.

The first step is to examine the place in the program where the error occurred
and see if you can figure out what happened.

NullPointerException: You tried to access an instance variable or invoke a
method on an object that is currently null. You should figure out what
variable is null and then figure out how it got to be that way.

Remember that when you declare a variable with an object type, it is
initially null, until you assign a value to it. For example, this code causes
a NullPointerException:

Point blank;

System.out.println (blank.x);

220 Debugging

ArrayIndexOutOfBoundsException: The index you are using to access an
array is either negative or greater than array.length-1. If you can find
the site where the problem is, add a print statement immediately before
it to print the value of the index and the length of the array. Is the array
the right size? Is the index the right value?

Now work your way backwards through the program and see where the
array and the index come from. Find the nearest assignment statement
and see if it is doing the right thing.

If either one is a parameter, go to the place where the method is invoked
and see where the values are coming from.

StackOverFlowException: See “Infinite recursion.”

I added so many print statements I get inundated with

output.

One of the problems with using print statements for debugging is that you can
end up buried in output. There are two ways to proceed: either simplify the
output or simplify the program.

To simplify the output, you can remove or comment out print statements that
aren’t helping, or combine them, or format the output so it is easier to under-
stand.

To simplify the program, there are several things you can do. First, scale down
the problem the program is working on. For example, if you are sorting an
array, sort a small array. If the program takes input from the user, give it the
simplest input that causes the error.

Second, clean up the program. Remove dead code and reorganize the program
to make it as easy to read as possible. For example, if you suspect that the error
is in a deeply-nested part of the program, try rewriting that part with simpler
structure. If you suspect a large method, try splitting it into smaller methods
and test them separately.

Often the process of finding the minimal test case leads you to the bug. For
example, if you find that a program works when the array has an even number
of elements, but not when it has an odd number, that gives you a clue about
what is going on.

Similarly, rewriting a piece of code can help you find subtle bugs. If you make
a change that you think doesn’t affect the program, and it does, that can tip
you off.

B.3 Semantic errors 221

B.3 Semantic errors

My program doesn’t work.

In some ways semantic errors are the hardest, because the compiler and the
run-time system provide no information about what is wrong. Only you know
what the program was supposed to do, and only you know that it isn’t doing it.

The first step is to make a connection between the program text and the behavior
you are seeing. You need a hypothesis about what the program is actually doing.
One of the things that makes this hard is that computers run so fast. You will
often wish that you could slow the program down to human speed, but there
is no straightforward way to do that, and even if there were, it is not really a
good way to debug.

Here are some questions to ask yourself:

• Is there something the program was supposed to do, but doesn’t seem to
be happening? Find the section of the code that performs that function
and make sure it is executing when you think it should. Add a print
statement to the beginning of the suspect methods.

• Is something happening that shouldn’t? Find code in your program that
performs that function and see if it is executing when it shouldn’t.

• Is a section of code producing an effect that is not what you expected?
Make sure that you understand the code in question, especially if it in-
volves invocations to built-in Java methods. Read the documentation for
the methods you invoke. Try out the methods by invoking the methods
directly with simple test cases, and check the results.

In order to program, you need to have a mental model of how programs work.
If your program that doesn’t do what you expect, very often the problem is not
in the program; it’s in your mental model.

The best way to correct your mental model is to break the program into its
components (usually the classes and methods) and test each component inde-
pendently. Once you find the discrepancy between your model and reality, you
can solve the problem.

Of course, you should be building and testing components as you develop the
program. If you encounter a problem, there should be only a small amount of
new code that is not known to be correct.

Here are some common semantic errors that you might want to check for:

• If you use the assignment operator, =, instead of the equality operator,
==, in the condition of an if, while or for statement, you might get an
expression that is sytactically legal, but it doesn’t do what you expect.

222 Debugging

• When you apply the equality operator, ==, to an object, it checks shallow
equality. If you meant to check deep equality, you should use the equals

method (or define one, for user-defined objects).

• Some Java libraries expect user-defined objects to define methods like
equals. If you don’t define them yourself, you will inherit the default
behavior from the parent class, which may not be what you want.

• In general, inheritance can cause subtle semantic errors, because you may
be executing inherited code without realizing it. Again, make sure you
understand the flow of execution in your program.

I’ve got a big hairy expression and it doesn’t do what I

expect.

Writing complex expressions is fine as long as they are readable, but they can
be hard to debug. It is often a good idea to break a complex expression into a
series of assignments to temporary variables.

For example:

rect.setLocation (rect.getLocation().translate

(-rect.getWidth(), -rect.getHeight()));

Can be rewritten as

int dx = -rect.getWidth();

int dy = -rect.getHeight();

Point location = rect.getLocation();

Point newLocation = location.translate (dx, dy);

rect.setLocation (newLocation);

The explicit version is easier to read, because the variable names provide addi-
tional documentation, and easier to debug, because we can check the types of
the intermediate variables and display their values.

Another problem that can occur with big expressions is that the order of eval-
uation may not be what you expect. For example, if you are translating the
expression x

2π
into Java, you might write

double y = x / 2 * Math.PI;

That is not correct, because multiplication and division have the same prece-
dence, and are evaluated from left to right. So this expression computes xπ/2.

A good way to debug expressions is to add parentheses to make the order of
evaluation explicit.

double y = x / (2 * Math.PI);

Any time you are not sure of the order of evaluation, use parentheses. Not
only will the program be correct (in the sense of doing what you intend); it
will also be more readable for other people who haven’t memorized the rules of
precedence.

B.3 Semantic errors 223

I’ve got a method that doesn’t return what I expect.

If you have a return statement with a complex expression, you don’t have a
chance to print the return value before returning. Again, you can use a tempo-
rary variable. For example, instead of

public Rectangle intersection (Rectangle a, Rectangle b) {

return new Rectangle (

Math.min (a.x, b.x),

Math.min (a.y, b.y),

Math.max (a.x+a.width, b.x+b.width)-Math.min (a.x, b.x)

Math.max (a.y+a.height, b.y+b.height)-Math.min (a.y, b.y));

}

You could write

public Rectangle intersection (Rectangle a, Rectangle b) {

int x1 = Math.min (a.x, b.x);

int y2 = Math.min (a.y, b.y);

int x2 = Math.max (a.x+a.width, b.x+b.width);

int y2 = Math.max (a.y+a.height, b.y+b.height);

Rectangle rect = new Rectangle (x1, y1, x2-x1, y2-y1);

return rect;

}

Now you have the opportunity to display any of the intermediate variables before
returning.

My print statement isn’t doing anything

If your use the println method, the output gets displayed immediately, but if
you use print (at least in some environments) the output gets stored without
being displayed until the next newline character gets output. If the program
terminates without producing a newline, you may never see the stored output.

If you suspect that this is happening to you, try changing all the print state-
ments to println.

I’m really, really stuck and I need help

First of all, try getting away from the computer for a few minutes. Computers
emit waves that affect the brain, causing the following symptoms:

• Frustration and/or rage.

• Superstitious beliefs (“the computer hates me”) and magical thinking
(“the program only works when I wear my hat backwards”).

• Random walk programming (the attempt to program by writing every
possible program and choosing the one that does the right thing).

224 Debugging

If you find yourself suffering from any of these symptoms, get up and go for a
walk. When you are calm, think about the program. What is it doing? What
are some possible causes of that behavior? When was the last time you had a
working program, and what did you do next?

Sometimes it just takes time to find a bug. I often find bugs when I am away
from the computer and I let my mind wander. Some of the best places to find
bugs are trains, showers, and in bed, just before you fall asleep.

No, I really need help.

It happens. Even the best programmers occasionally get stuck. Sometimes you
work on a program so long that you can’t see the error. A fresh pair of eyes is
just the thing.

Before you bring someone else in, make sure you have exhausted the techniques
described here. You program should be as simple as possible, and you should
be working on the smallest input that causes the error. You should have print
statements in the appropriate places (and the output they produce should be
comprehensible). You should understand the problem well enough to describe
it concisely.

When you bring someone in to help, be sure to give them the information they
need.

• What kind of bug is it? Compile-time, run-time, or semantic?

• If the bug occurs at compile-time or run-time, what is the error message,
and what part of the program does it indicate?

• What was the last thing you did before this error occurred? What were
the last lines of code that you wrote, or what is the new test case that
fails?

• What have you tried so far, and what have you learned?

When you find the bug, take a second to think about what you could have done
to find it faster. Next time you see something similar, you will be able to find
the bug more quickly.

Remember, in this class the goal is not to make the program work. The goal is
to learn how to make the program work.

Appendix C

Input and Output in Java

System objects

System is the name of the built-in class that contains methods and objects used
to get input from the keyboard, print text on the screen, and do file input/output
(I/0).

System.out is the name of the object we have used to print text. When you
invoke print and println, you invoke them on the object named System.out.

Interestingly, you can print System.out:

System.out.println (System.out);

The output is:

java.io.PrintStream@80cc0e5

As usual, when Java prints an object, it prints the type of the object, which is
PrintStream, the package in which that type is defined, java.io, and a unique
identifier for the object. On my machine the identifier is 80cc0e5, but if you
run the same code, you will probably get something different.

There is also an object named System.in that has type BufferedInputStream.
System.in makes it possible to get input from the keyboard. Unfortunately, it
does not make it easy to get input from the keyboard.

Keyboard input

First, you have to use System.in to create a new InputStreamReader.

InputStreamReader in = new InputStreamReader (System.in);

Then you use in to create a new BufferedReader:

BufferedReader keyboard = new BufferedReader (in);

226 Input and Output in Java

The point of all this manipulation is that there is a method you can invoke on
a BufferedReader, called readLine, that gets input from the keyboard and
converts it into a String. For example:

String s = keyboard.readLine ();

System.out.println (s);

reads a line from the keyboard and prints the result.

There is only one problem. There are things that can go wrong when you invoke
readLine, and they might cause an IOException. There is a rule in Java that
if a method might cause an exception, it should say so. The syntax looks like
this:

public static void main (String[] args) throws IOException {

This indicates that main might “throw” an IOException. You can think of
throwing an exception as similar to throwing a tantrum.

File input

Reading input from a file is equally stupid. Here is an example:

public static void main (String[] args)

throws FileNotFoundException, IOException {

processFile ("/usr/dict/words");

}

public static void processFile (String filename)

throws FileNotFoundException, IOException {

FileReader fileReader = new FileReader (filename);

BufferedReader in = new BufferedReader (fileReader);

while (true) {

String s = in.readLine();

if (s == null) break;

System.out.println (s);

}

}

This program reads each line of the named file (/use/dict/words) into
a String and then prints the line. Again, the declaration throws

FileNotFoundException, IOException is required by the compiler. The ob-
ject types FileReader and BufferedReader are part of the insanely complicated
class hierarchy Java uses to do incredibly common, simple things. Other than
that, you couldn’t possibly care how this program works.

Appendix D

The Slate Class

import java.awt.*;

public class Example {

// demonstrate simple use of the Slate class

public static void main (String[] args) {

int width = 500;

int height = 500;

Slate slate = Slate.makeSlate (width, height);

Graphics g = Slate.getGraphics (slate);

g.setColor (Color.blue);

draw (g, 0, 0, width, height);

anim (slate, 0, 0, width, height);

}

// draw is taken from Section 4.14 of the book

public static void draw (Graphics g, int x, int y, int width, int height) {

if (height < 3) return;

g.drawOval (x, y, width, height);

draw (g, x, y+height/2, width/2, height/2);

draw (g, x+width/2, y+height/2, width/2, height/2);

}

// anim demonstrates a simple animation

228 The Slate Class

public static void anim (Slate slate, int x, int y, int width, int height) {

Graphics g = slate.image.getGraphics ();

g.setColor (Color.red);

for (int i=-100; i<500; i+=8) {

g.drawOval (i, 100, 100, 100);

slate.repaint ();

try {

Thread.sleep(10);

} catch (InterruptedException e) {

}

}

}

}

class Slate extends Frame {

// image is a buffer: when Slate users draw things, they

// draw on the buffer. When the Slate gets painted, we

// copy the image onto the screen.

Image image;

public static Slate makeSlate (int width, int height) {

Slate s = new Slate ();

s.setSize (width, height);

s.setBackground (Color.white);

s.setVisible (true);

s.image = s.createImage (width, height);

return s;

}

// when a Slate user asks for a Graphics object, we give

// them one from the off-screen buffer.

public static Graphics getGraphics (Slate s) {

return s.image.getGraphics ();

}

// normally update erases the screen and invokes paint, but

// since we are overwriting the whole screen anyway, it is

// slightly faster to override update and avoid clearing the

// screen

public void update (Graphics g) {

paint (g);

}

229

// paint copies the off-screen buffer onto the screen

public void paint (Graphics g) {

g.drawImage (image, 0, 0, null);

}

}

Index

abstract class, 167, 169, 171, 177, 183
Comparable, 167
defining, 178
implementing, 170, 178
List, 204
Visitable, 177

abstract data type, see ADT
abstract parameter, 119, 120
Abstract Window Toolkit, see AWT
abstraction, 119, 120
ADT, 149, 155, 158, 173, 187

Priority Queue, 159, 166
Queue, 159
Stack, 150
Table, 200
Tree, 179

algorithm, 97, 98
algorithm analysis, 188, 190
aliasing, 81, 85, 113, 124
ambiguity, 7, 112

fundamental theorem, 143
analysis

Hashtable, 207
hashtable, 205
Heap, 196
heapsort, 197
mergesort, 190
Priority Queue, 191

argument, 21, 25, 29
arithmetic

char, 72
complex, 130
floating-point, 20, 96
integer, 16

array, 99, 108, 199
compared to object, 102
copying, 100
element, 99

length, 102
of Cards, 121
of object, 114
of String, 111
resizing, 156
traverse, 104

ArrayIndexOutOfBounds, 156, 183
assignment, 13, 18, 57
associative array, 199, 207
AWT, 77, 85, 136

big-O notation, 197
binary tree, 173, 184
bisection

debugging by, 217
bisection search, 116
body

loop, 59
method, 22, 178

boolean, 50, 52, 56
bounding box, 36, 43
bucket, 105
buffer

circular, 163
bug, 4

Card, 109
cargo, 139, 147, 173
Cartesian coordinate, 37
char, 67, 72
charAt, 67
Chianti, 100, 142
child node, 174, 184
circular buffer, 163, 171
class, 24, 29, 98

abstract, 167, 169, 177
Card, 109
Complex, 130
Date, 92

232 Index

Enumeration, 201
Golfer, 170
Graphics, 35, 67, 130
Hashtable, 200
Iterator, 183
LinkedList, 146
Math, 21
name, 8
Node, 139
parent, 137
Point, 78
Rectangle, 80, 136
Slate, 35, 227
Stack, 150
String, 67, 74
StringTokenizer, 154
Time, 27, 88
Token, 178
Vector, 182
wrapper, 151

class definition, 87
class hierarchy, 137
class method, 130, 138
class variable, 184
ClassCastException, 169
client, 149, 158, 169, 177
collection, 102, 108, 141, 150, 159
comment, 8
Comparable, 167, 170
comparable, 113
compareCard, 113
compareTo, 74
comparison

operator, 32
String, 74

compile, 2, 10
compile-time error, 4, 215
compiler, 215
complete ordering, 113
complete tree, 192
Complex, 130
complex number, 130
complexity class, 197, 198
composition, 17, 18, 22, 49, 109, 114
concatenate, 17, 18
ConcurrentModification, 184
conditional, 31, 43

alternative, 32
chained, 33, 43
nested, 33, 43

conditional operator, 113
constant time, 161, 171, 192, 197
constructor, 89, 98, 110, 121, 124, 130,

131, 136
convention, 41
coordinate, 37, 43
correctness, 118
counter, 71, 75, 104
current object, 130, 135, 138

data structure, 173
generic, 139, 150, 167

Date, 92
dead code, 46, 56
dealing, 125
debugging, 4, 10, 215
debugging by bisection, 217
deck, 114, 119, 121
declaration, 12, 78
decrement, 71, 75, 94
deep equality, 112, 120, 206
delimiter, 154, 158
deterministic, 103, 108
diagram

implementation, 173, 187
stack, 27, 40, 54
state, 40, 54

dictionary, 199, 207
distribution, 103
divine law, 41
division

floating-point, 60
integer, 16

documentation, 67, 69, 147
dot notation, 79, 132
double (floating-point), 19
double-quote, 68
Doyle, Arthur Conan, 5
drawable, 136
drawLine, 38
drawOval, 36
drawRect, 38

efficiency, 125

Index 233

element, 99, 108
embedded reference, 139, 173
encapsulation, 62, 63, 66, 71, 81, 115,

149, 155, 177, 184
encode, 110, 120
encrypt, 110
entry, 199, 207
Enumeration class, 201
equality, 112, 134, 203
equals, 74, 134, 203
error, 10

compile-time, 4, 215
logic, 5
run-time, 5, 69, 215
semantic, 215

error messages, 215
Exception, 219
exception, 5, 10, 75, 215

ArrayIndexOutOfBounds, 156,
183

ArrayOutOfBounds, 100
ClassCastException, 169
ConcurrentModification, 184
NullPointer, 83, 114
NumberFormat, 152
StackOverflow, 43, 119
StringIndexOutOfBounds, 69

explicit, 138
expression, 15, 17, 18, 21, 22, 100

big and hairy, 222
boolean, 50

expression tree, 175
expressions, 153

factorial, 55
fava beans, 100, 142
FIFO, 159, 171
fill-in method, 95
fillOval, 38
fillRect, 38
findBisect, 117
findCard, 116
floating-point, 19, 29
flow of execution, 219
for, 101
formal language, 6, 10
frabjuous, 53

fractal, 43
fruitful method, 28, 45
function, 92, 98
functional programming, 98, 129

garbage collection, 83, 85
generalization, 62, 64, 66, 71, 81, 97
generic, 167
generic data structure, 139, 147, 150
Golfer, 170
Graphics, 35, 130
graphics coordinate, 37

hanging, 217
hash code, 206, 207
hash function, 205–207
hash table, 207

implementation, 204
resizing, 206

Hashtable, 200
Heap, 187

analysis, 196
definition, 192

heap property, 192
heapsort, 197, 198
height, 193
hello world, 7
helper method, 124, 127, 145, 189
high-level language, 1, 10
histogram, 105, 108
Holmes, Sherlock, 5

identity, 112, 134
immutable, 74
implementation

hash table, 204
Priority Queue, 167, 191
Queue, 159
Stack, 155
Table, 202, 204
Tree, 173, 179

implicit, 138
import, 77, 136
increment, 71, 75, 94
incremental development, 47, 95
index, 69, 75, 100, 108, 115, 199
indexOf, 70
infinite list, 143

234 Index

infinite loop, 59, 66, 217
infinite recursion, 43, 119, 217
infix, 153, 158, 175
inheritance, 129, 135
initialization, 19, 51, 56
inorder, 176, 184
instance, 85, 98
instance variable, 79, 85, 88, 121, 131,

135
instanceof operator, 214
integer division, 16
interface, 38, 43, 169, 171, 178
interpret, 2, 10
invariant, 147, 158
iteration, 58, 66
Iterator class, 183

key, 199, 207
KeyValuePair, 202
keyword, 15, 18

language, 112
complete, 52
formal, 6
high-level, 1
low-level, 1
natural, 6
programming, 1, 129
safe, 5

leaf node, 174, 184
leap of faith, 55, 127, 142
length

array, 102
String, 68

level, 174, 184
linear search, 116
linear time, 161, 171, 192, 197
link, 147
linked queue, 161, 171
LinkedList, 146
Linux, 6
list, 139, 147

as parameter, 141
infinite, 143
loop, 143
modifying, 144
printing, 141

printing backwards, 142
traversal, 141
traverse recursively, 142
well-formed, 147

List abstract class, 204
literalness, 7
load factor, 206, 207
local variable, 64, 66
logarithm, 60
logarithmic time, 196, 197
logic error, 5
logical operator, 51
loop, 59, 66, 100

body, 59
counting, 71
for, 101
in list, 143
infinite, 59, 66
nested, 114
search, 116

loop variable, 62, 64, 69, 100, 141
looping and counting, 104
Lovelace, Ada, 74
low-level language, 1, 10

main, 22
map to, 110
mapping, 205
Math class, 21
mean, 103
mental model, 221
mergesort, 125, 190, 198
method, 24, 29, 63

boolean, 52
class, 130, 135
constructor, 89
definition, 22
equals, 134
fill-in, 95
fruitful, 28, 45
function, 131
Graphics, 36
helper, 124, 127, 145
invoking, 134
main, 22
modifier, 94, 132
multiple parameter, 27

Index 235

object, 36, 67, 130, 135, 144
private, 157
pure function, 92
string, 67
toString, 133
void, 45
wrapper, 145

Mickey Mouse, 37
model

mental, 221
modifier, 94, 98, 132
modifying lists, 144
modulus, 31, 43, 205
multiple assignment, 57
mutable, 81

natural language, 6, 10, 112
nested structure, 34, 51, 109
new, 78, 90, 122
newline, 11, 40
node, 139, 147, 173

object method, 144
Node class, 139
nondeterministic, 103
null, 82, 99, 114
NumberFormatException, 152

Object, 137
object, 67, 75, 77, 92

array of, 114
as parameter, 79
as return type, 80
compared to array, 102
current, 130
mutable, 81
printing, 91

object invariant, 147
object method, 67, 130, 138
object type, 84, 87, 151
object-oriented design, 137
object-oriented programming, 129
operand, 16, 18
operator, 15, 18

char, 72
comparison, 32
Complex, 131
conditional, 56, 113

decrement, 72, 94
increment, 72, 94
instanceof, 214
logical, 51, 56
modulus, 31, 205
object, 92
relational, 32, 50
string, 17

order of evaluation, 222
order of growth, 197, 198
order of operations, 16
ordering, 113
overhead, 191, 198
overloading, 49, 56, 89, 124, 135

package, 77, 85
parameter, 25, 29, 79

abstract, 119
multiple, 27

parent class, 137
parent node, 174, 184
parse, 6, 10, 154, 158
partial ordering, 113
performance analysis, 160, 188
performance hazard, 160, 171
pixel, 37
poetry, 7
Point, 78
portable, 1
postcondition, 158
postfix, 153, 158, 175
postorder, 176, 184
precedence, 16, 222
precondition, 143, 147, 158
predicate, 158
prefix, 184
preorder, 176, 184
primitive type, 84, 151
print, 8, 11, 91

array of Cards, 115
Card, 111

print statement, 220, 223
printCard, 111
printDeck, 115, 122
priority queue, 159, 171

ADT, 166
array implementation, 167

236 Index

sorted list implementation, 191
priority queueing, 159
private method, 157
problem-solving, 10
procedural programming, 129
program development, 47, 66

incremental, 95
planning, 95

programming
functional, 129
object-oriented, 129
procedural, 129

programming language, 1, 129
programming style, 95, 129
project, 98
prose, 7
prototype, 38, 43
prototyping, 95
provider, 149, 158, 177
pseudocode, 123, 127, 190
pseudorandom, 108
pure function, 92, 131

quadratic time, 189, 197
queue, 159, 171

circular buffer implementation,
163

linked implementation, 161
List implementation, 159

Queue ADT, 159
queueing discipline, 159, 171
quote, 68

random number, 103, 123
rank, 109
Rectangle, 80, 136
recursion, 39, 43, 52, 117, 127, 176,

190, 195
infinite, 43, 119

recursive, 40
recursive definition, 194
redundancy, 7
reference, 78, 81, 85, 111, 123, 124, 139

embedded, 139
rehashing, 206
reheapify, 194
relational operator, 32, 50
resizing, 206

return, 34, 45, 80
inside loop, 116

return statement, 223
return type, 56
return value, 45, 56
role

variable, 143
root node, 174, 184
rounding, 20
run time, 188
run-time error, 5, 69, 75, 83, 100, 114,

215

safe language, 5
sameCard, 112
scaffolding, 48, 56
searching, 116
selection sort, 123, 189, 198
semantic error, 215
semantics, 5, 10, 51
setColor, 36
shallow equality, 112, 120
shifted sum, 205, 207
shuffling, 122, 125
singleton, 145, 146
Slate, 35, 227
sorting, 123, 125, 189, 190, 197
Stack, 150
stack, 40, 54, 150

array implementation, 155
stack diagram, 27
startup class, 98
state, 78, 85
state diagram, 78, 85, 99, 111, 114, 121
statement, 3, 18

assignment, 13, 57
comment, 8
conditional, 31
declaration, 12, 78
for, 101
import, 77, 136
initialization, 51
new, 78, 90, 122
print, 8, 11, 91, 220, 223
return, 34, 45, 80, 116, 223
while, 58

static, 8, 45, 89, 130, 135

Index 237

statistics, 103
String, 11, 74, 77

array of, 111
length, 68
reference to, 111

String method, 67
string operator, 17
StringTokenizer class, 154
subdeck, 119, 124
suit, 109
Sun, 67
swapCards, 123
syntax, 4, 10, 216

table, 60, 199, 207
hash table implementation, 204
two-dimensional, 61
vector implementation, 202

Table ADT, 200
temporary variable, 46, 222
testing, 118, 126
theorem

fundamental ambiguity, 143
this, 89, 130, 135, 138
Time, 88
token, 154, 158
Token class, 178
toLowerCase, 74
toString, 133
toUpperCase, 74
traverse, 69, 75, 116, 141, 142, 175,

176, 201, 203
array, 104
counting, 71

tree, 173, 192
array implementation, 179
complete, 192
empty, 175
expression, 175
linked implementation, 174
traversal, 175, 176

tree node, 173
Turing, Alan, 52, 74
type, 18

array, 99
char, 67, 72
conversion, 34

double, 19
int, 16
object, 84, 87, 134
primitive, 84
String, 11, 77
user-defined, 87

typecast, 43
typecasting, 20, 34, 73

user-defined type, 87

value, 12, 18, 207
char, 68

variable, 12, 18
instance, 79, 88, 121, 131, 135
local, 64, 66
loop, 62, 64, 69, 100
roles, 143
temporary, 46, 222

Vector, 199
Vector class, 182
veneer, 160, 171
Visitable, 177
void, 45, 56, 92

while statement, 58
wrapper, 147
wrapper class, 151, 158

extracting value, 152
instantiating, 152
methods, 153

wrapper methods, 145

