
Getting Started (v1.8.6)
3/5/2007

2 Getting Started
Java will be used in the examples in this section; however, the information applies to all
supported languages for which you have installed a compiler (e.g., Ada, C, C++, Java)
unless noted otherwise. In any of the language specific steps below, simply select the
appropriate language and source code. For example, in the “Creating a New File” below,
you may select C++ as the language instead of Java, and then enter a C++ example. If
you have installed jGRASP on your own PC, you should see the jGRASP icon on the
Windows desktop.

Objectives – When you have completed this tutorial, you should be comfortable with
editing, compiling, and running Java programs in jGRASP. In addition, you should be
familiar with the pedagogical features provided by the Control Structure Diagram (CSD)
window, including generating the CSD, folding your source code, numbering the lines,
and stepping through the program in the integrated debugger.

The details of these objectives are captured in the hyperlinked topics listed below.

2.1 Starting jGRASP

2.2 Quick Start - Opening a Program, Compiling, and Running

2.3 Creating a New File

2.4 Saving a File

2.5 Generating a Control Structure Diagram

2.6 Folding a CSD

2.7 Line Numbers

2.8 Compiling a Program – A Few More Details

2.9 Running a Program - Additional Options

2.10 Using the Debugger

2.11 Opening a File – Additional Options

2.12 Closing a File

2.13 Exiting jGRASP

2.14 Exercises

2.15 Review and Preview of What’s Ahead

Getting Started (v1.8.6)
3/5/2007

2.1 Starting jGRASP
If you are working in a Microsoft Windows environment, you can start jGRASP
by double clicking its icon on your Windows desktop. If you are working in a
computer lab and you don’t see the jGRASP icon on the desktop, try the
following: click Start – Programs – jGRASP

jGRASP

Depending on the speed of your computer, jGRASP may take between 10 and 30 seconds
to start up. The jGRASP virtual Desktop, shown below, is composed of a Control Panel
with a menu and toolbar across the top plus three resizable panes. The left pane has tabs
for Browse, Debug, Find, and Workbench (Project tab is combined with the Browse tab
beginning in version 1.7). The Browse tab, which is the default when jGRASP is started,
lists the files in the current directory. The large right pane is for UML and CSD
Windows. The lower pane has tabs for jGRASP messages, Compile messages, and Run
Input/Output. The panes can be resized by moving the horizontal or vertical partitions
that separate them. Select the partition with the mouse (left-click and hold down) then
drag the partition to make a pane larger or smaller. You can also click the arrowheads on
the partition to open and close the pane.

Figure 2-1. The jGRASP Virtual Desktop

To Resize Pane,
Select and Drag

Partition or Click
Arrowheads to
open or close

CSD and UML
Windows

Message
Tab Pane

Browse
Tab Pane

Getting Started (v1.8.6)
3/5/2007

2.2 Quick Start - Opening a Program, Compiling, and Running
Example programs are available in the jGRASP folder in the directory where it was
installed (e.g., c:\program files\jgrasp\examples\Tutorials). If jGRASP was installed by a
system administrator, you may not have write privileges for these files. If this is the case,
you should copy the tutorial folder to one of your personal folders (e.g., in your My
Documents folder).

Note: If you already have example programs with which you are familiar, you
may prefer to use them rather than the ones included with jGRASP as you work
through this first tutorial.

Clicking the Open File button on the toolbar pops up the Open File dialog. However,
the easiest way to open existing files is to use the Browse tab (below). The files shown
initially in the Browse tab will most likely be in your home directory. You can navigate
to the appropriate directory by double-clicking on a folder in the list of files or by
clicking on as indicated in the figure below. The refresh button updates the
Browse pane. Below, the Browse tab is displaying the contents of the Tutorials folder.

Figure 2. The jGRASP Virtual Desktop

To open a
folder

To m
the

ove up in
directory

To open a
file

Figure 2. The jGRASP Virtual Desktop

To open a
folder

To m
the

ove up in
directory

To open a file, double click on
the file name

To open a
folder

To open a file, double click on
the file name

To m
the

ove up in
directory

To open a
folder

To open a file, double click on
the file name

To open a file
double click on the file name

To move up in the directory
click on

To open a folder
double-click on the folder name

Figure 2-2. The jGRASP Virtual Desktop

Getting Started (v1.8.6)
3/5/2007

Double-clicking on the Hello folder, then the Hello.java file, as shown in Step 1 below,
opens the program in a CSD window. The CSD window is a full-featured editor for
entering and updating your programs. Notice that opening the CSD window places
additional buttons on the toolbar. Once you have opened a program or entered a new
program (File – New File – Java) and saved it, you are ready to compile the program and
run it. To compile the program, click on the Build menu then select Compile.
Alternatively, you can click on the Compile button indicated by Step 2 below. After a
successful compilation – no error messages in the Compile Messages tab (the lower
pane), you are ready to run the program by clicking on the Run button as shown in Step 3
below, or you can click the Build menu and select Run. The standard input and output
for your program will be in the Run I/O tab of the Message pane.

Step 1. Open file

Double-click file name

Step 3. Run program

Step 2. Compile program

Figure 2-3. After loading file into CSD Window

Getting Started (v1.8.6)
3/5/2007

2.3 Creating a New File
To create a new Java file within the Desktop, click on File – New File – Java. Note that
the list of languages displayed by File – New File will vary with your use of jGRASP. If
the language you want is not listed, click Other to see the additional available languages.
The languages for the last 25 files opened will be displayed in the initial list; the
remaining available languages will be under Other.

After you click on File – New File – Java, a CSD window is opened in the right pane of
the Desktop as shown in Figure 2-4 below. Notice the title for the frame, jGRASP CSD
(Java), which indicates the CSD window is Java specific. If Java is not the language you
intend to use, you should close the window and then open a CSD window for the correct
language. Notice the button for each open file appears below the CSD windows in an
area called the windowbar (similar to a taskbar in the Windows OS environment). Later
when you have multiple files open, the windowbar will be quite useful for popping a
particular window to the top. Later when you have numerous windows open, you may
want to reorder the buttons by dragging them around on the windowbar.

 In the upper right corner of the CSD window are three buttons that control its

Figure 2-4. Opening a CSD Window for Java

Buttons for Hello.java and
Grasp2 (an unnamed file)

on Windowbar

Getting Started (v1.8.6)
3/5/2007

display. The first button minimizes the CSD window; the second button maximizes the
CSD window or, if it is already maximized, the button restores the CSD window to its
previous size. The third button closes the CSD window. You may also make the
Desktop itself full screen by clicking the appropriate button in the upper corner of it.

Figure 2-5 shows the CSD window maximized within the virtual Desktop. The “L”
shaped cursor in the upper left corner of the empty window indicates where text will be
entered.

TIP: If you want all of your CSD windows to be maximized automatically when you
open them, click Settings – Desktop, and then click Open Desktop Windows
Maximized (note that a check mark indicates this option is turned ON).

Figure 2-5. CSD Window maximized in Desktop

Getting Started (v1.8.6)
3/5/2007

Type in the following Java program in the CSD window, exactly as it appears.
Remember, Java is case sensitive. Alternatively, you may copy/paste the Hello program
into this window, then change the class name to Hello2 and add the “Welcome…” line.
 public class Hello2
 {
 public static void main(String[] args)
 {
 System.out.println ("Hello world!");
 System.out.println ("Welcome to jGRASP!");
 }
 }

After you have entered the program, your CSD window should look similar to the
program shown in Figure 2-6.

Figure 2-6. CSD Window with program entered

Getting Started (v1.8.6)
3/5/2007

2.4 Saving a File
You can save the program as "Hello2.java" by doing any of the following:

(1) Click the Save button on the toolbar, or

(2) Click File – Save on menu (see Figure 2-7), or

(3) Pressing Ctrl-S (i.e., while pressing the Ctrl key, press the “s” key).

If the file has not been saved previously, the Save dialog box pops up with the name of
the file set to the name of the class file. Note, in Java, the file name must match the class
name (i.e., class Hello2 must be saved as Hello2.java). Be sure you are in the correct
directory. If you need to create a new directory, click the folder button on the top row of
the Save dialog. When you are in the proper directory and have the correct file name
indicated, click the Save button on the dialog. After your program has been saved, it
should be listed in the Browse tab (see Figure 2.8 on the next page). If you do not see the
program in the Browse tab, you may need to navigate to the directory where the file was
saved. TIP: Click on the toolbar to change the Browse tab to the directory of the
current file.

Figure 2-7. Saving a file from the CSD Window

Getting Started (v1.8.6)
3/5/2007

2.5 Generating a Control Structure Diagram
You can generate a Control Structure Diagram in the CSD window whenever you have a
syntactically correct program. Note that CSD generation does not do type checking so,
even though the CSD may generate okay, the program may not compile. Generate the
CSD for the program by doing any of the following:

(1) Click the Generate CSD button , or

(2) Click View – Generate CSD on the menu, or

(3) Press the F2 key.

If your program is syntactically correct, the CSD will be generated as shown in the figure
below. After you are able to successfully generate a CSD, go on to the next section
below.

Figure 2-8. After CSD is generated

Getting Started (v1.8.6)
3/5/2007

If a syntax error is detected during the CSD generation, jGRASP will highlight the
vicinity of the error and describe it in the message window.

If you do not find an error in the highlighted line, be sure to look for the error in the line
just above it. For example in Figure 2-9, the semi-colon was omitted at the end of the
first println statement. As you gain experience, these errors will become easier to spot.

If you are unable find and correct the error, you should try compiling the program since
the compiler usually provides a more detailed error message (see Compiling_a_Program
below).

You can remove the CSD by doing any of the following:

(1) Click the Remove CSD button , or

(2) Click View – Remove CSD on the menu, or

(3) Press Shift-F2.

Remember, the purpose of using the CSD is to improve the readability of your program.
While this is may not be obvious on a simple program like the example, it should become

Figure 2-9. Syntax error detected

Getting Started (v1.8.6)
3/5/2007

apparent as the size and complexity of your programs increase.

TIP: As you enter a program, try to enter it in “chunks” that are syntactically correct.
For example, the following is sufficient to generate the CSD.

 public class Hello
{
}

As soon as you think you have entered a syntactically correct chunk, you should generate
the CSD. Not only does this update the diagram, it catches your syntax errors early.

2.6 Folding a CSD
Folding is a CSD feature that becomes increasingly useful as programs get larger. After
you have generated the CSD, you can fold your program based on its structure.

For example, if you double-click on the class symbol ÕÖ× in the program, the entire
program is folded (Figure 2-10). Double-clicking on the class symbol again will unfold
the program completely. If you double-click on the “plus” symbol, the first layer of the
program is unfolded. Large programs can be unfolded layer by layer as needed.

Although the example program has no loops or conditional statements, these may be
folded by double-clicking the corresponding CSD control constructs. For other folding
options, see the View – Fold menu.

Figure 2-10. Folded CSD

Getting Started (v1.8.6)
3/5/2007

2.7 Line Numbers
Line numbers can be very useful when referring to specific lines or regions of a program.
Although not part of the actual program, they are displayed to the left of the source code
as indicated in Figure 2-11.

 Line numbers can be turned on and off by clicking the Toggle Line Numbers button
on the CSD window toolbar or via the View menu.

With Line numbers turned on, if you insert a line in the code, all line numbers below the
new line are incremented.

 You may “freeze” the line numbers to avoid the incrementing by clicking on the
Freeze Line Numbers button. To unfreeze the line numbers, click the button again. This
feature is also available on the View menu.

Figure 2-11. Line numbers in the CSD Window

Getting Started (v1.8.6)
3/5/2007

2.8 Compiling a Program – A Few More Details
When you have a program in the CSD window, either by loading a source file or by
typing it in and saving it, you are ready to compile the program. When you compile your
program, the file is automatically saved if Auto Save is ON, which it is by default. Auto
Save can be turned on/off by clicking Settings – Auto Save. If you are compiling a
language other than Java, you will need to “compile and link” the program.

 Compile a Java program in jGRASP by clicking the Compile button or by clicking
on the Compiler menu: Build – Compile (Figure 2-12).

 Compile and Link the program (if you are compiling a language other than Java) by
clicking on the Compile and Link button or by clicking on the Build menu: Build –
Compile and Link. Note, this option will not be visible on the toolbar and menu in a
CSD window for a Java program.

In the figure below, also note that Debug Mode is checked ON. This should always be
left on so that the .class file created by the compiler will contain information about
variables in your program that can be displayed by the debugger and Object Workbench.

Figure 2-12. Compiling a program

Getting Started (v1.8.6)
3/5/2007

The results of the compilation will appear in the Compile Messages tab in the lower
window of the Desktop. If your program compiled successfully, you should see the
message “operation complete” with no errors reported, as illustrated in Figure 2-13. Now
you are ready to "Run" the program (see 2.9 Running A Program – Additional Options).

Figure 2-13. A successful compilation
Error Messages

An error message indicating “file not found,” generally means jGRASP could not find the
compiler. For example, if you are attempting to compile a Java program and the message
indicates that “javac” was not found, this means the Java compiler (javac) may not have
been installed properly. Go back to Section 1, Installing jGRASP, and be sure you have
followed all the instructions. Once the Java JDK is properly installed and set up, any
errors reported by the compiler should be about your program.

Figure 2-14 shows a program with a missing “)” in the first println statement. The error
description is highlighted in the Compiler Message tab, and jGRASP automatically
scrolls the CSD window to the line where the error most likely occurred and highlights it.

Getting Started (v1.8.6)
3/5/2007

If multiple errors are indicated, you should correct all that are obvious and then compile
the program again. Sometimes correcting one error can clear up several error messages.

Only after you have “fixed” all reported errors will your program actually compile, which
means a .class file will be created for your .java file. After this .class file has been
created, you can “Run” the program as described in the next section.

Figure 2-14. Compile time error reported

Getting Started (v1.8.6)
3/5/2007

2.9 Running a Program - Additional Options
At this point you should have successfully compiled your program. Two things indicate
this. First, there should be no errors reported in the Compile Messages window. Second,
you should have a Hello2.class file listed in the Browse pane, assuming the pane is set to
list “All Files.”

To run the program, click Build – Run on the toolbar (Figure 2-15). The options on the
Build menu allow you to run your program: as an application (Run), as an Applet (Run
as Applet), as an application in debug mode (Debug), as an Applet in debug mode
(Debug as Applet). Other options allow you to pass Run arguments, Run in an MS-DOS
window rather than the jGRASP Run I/O message pane, and Run Topmost to keep
frames and dialogs of the program on top jGRASP components.

 You can also run the program by clicking the Run button on the tool bar.

Figure 2-15. Running a program

Getting Started (v1.8.6)
3/5/2007

Output
If a program has any standard input and/or output, the Run I/O tab in the lower pane pops
to the top of the Desktop. In Figure 2-16, the output from running the Hello2 program is
shown in Run I/O tab.

Figure 2-16. Output from running the program

Getting Started (v1.8.6)
3/5/2007

2.10 Using the Debugger
jGRASP provides an easy-to-use visual Debugger that allows you to set one or more
breakpoints in your program, run the debugger, then after the program reaches a
breakpoint, step through your program statement by statement. To set a breakpoint,
hover the mouse over the gray column to the left of the line where you want to set the
breakpoint. When you see the red breakpoint symbol, left-click the mouse to set the
breakpoint. You can also set a breakpoint by left-clicking on the statement where you
want your program to stop, then right-clicking to select Toggle Breakpoint (Figure 2-
17). Alternatively, after left-clicking on the line where you want the breakpoint, click
View – Breakpoints – Toggle Breakpoint. You should see the red octagonal breakpoint
symbol appear in the gray area to the left of the line. The statement you select must be
an executable statement (i.e., one that causes the program to do something). In the
Hello2 program below, a breakpoint has been set on the first of the two
System.out.println statements, which are the only statements in this program that allow a
breakpoint.

To start the debugger on an application, click the debug button on the toolbar.
Alternatively, you can click Build – Debug. When the debugger starts, the Debug tab

Figure 2-17. Setting a breakpoint

Getting Started (v1.8.6)
3/5/2007

should pop up in place of the Browse tab, and your program should stop at the breakpoint
as shown in Figure 2-18 below.

The debugger control buttons are
located at the top of the Debug tab.
Only one of the buttons is needed in this section. Each time you click the “step”
button , your program should advance to the next statement. After stepping all the way
through your program, the Debug tab pane will go blank to signal the debug session has
ended. When a program contains variables, you will be able to view the values of the
variables in the Debug tab as you step through the program.

In the example below, the program has stopped at the first output statement. When the
step button is clicked, this statement will be executed and “Hello world!” will be output
to the Run I/O tab pane. Clicking the step button again will output “Welcome to
jGRASP!” on the next line. The third click on the step button will end the program, and
the Debug tab pane should go blank as indicated above. When working with the
debugger, remember that the highlighted statement with the blue arrow pointing to it will
be the next statement to be executed. For a complete description of the other debugger
control buttons, see the tutorial on the Integrated Debugger.

Figure 2-18. Stepping with the Debugger

Getting Started (v1.8.6)
3/5/2007

2.11 Opening a File – Additional Options
A file can be opened in a CSD window in a variety of ways. Each of these is described
below.

(1) Browse Tab - If the file is listed in jGRASP Browse tab, you can simply double click
on the file name, and the file will be opened in a new CSD window. We did this
back in section 2.1 Quick Start. You can also drag a file from the Browse tab and
drop it in the CSD window area.

(2) Menu or Toolbar - On the menu, click File – Open or Click the Open File button
on the toolbar. Either of these will bring up the Open File dialog illustrated in Figure
2-19.

Figure 2-19. Open File dialog

(3) Windows File Browser - If you have a Windows file browser open (e.g., My
Computer, My Documents, etc.), and the file is marked as a jGRASP file, you can
just double click the file name.

(4) Windows File Browser (drag and drop) - If you have a Windows file browser open
(e.g., My Computer, My Documents, etc.), you can drag a file from the file browser
to the jGRASP Desktop and drop it in the area where the CSD window would
normally be displayed.

Getting Started (v1.8.6)
3/5/2007

In all cases above, if a file is already open in jGRASP, the CSD window containing it
will be popped to the top of the Desktop rather than jGRASP opening a second CSD
window with the same file.

Multiple CSD Windows
When you have multiple files open, each is in a separate CSD window. Each program
can be compiled and run from its respective CSD window. When multiple windows are
open, the single menu and toolbar go with the top window only, which is said to have
“focus” in the desktop. In Figure 2-20, two CSD windows have been opened. One
contains Hello.java and the other contains Hello2.java. If the window in which you want
to work is visible, simply click the mouse on it to bring it to the top. If you have many
windows open, you may need to click the Window menu, then click the file name in the
list of the open files. However, the easiest way to give focus to a window is to click the
window’s button on the windowbar below the CSD window. As described earlier, these
buttons can be reordered by dragging/dropping them on the windowbar. In the figure
below, the windowbar has buttons for Hello and Hello2. Notice that Hello2.java is
underlined both on the windowbar and in the Browse tab to indicate that it has the current
focus. Hello2.java is also displayed in the desktop’s blue title bar.

rent
e is
title
 the
the

Figure 2-20. Multiple files open

When Hello2.java has the cur
focus in the desktop, the file nam
indicated in jGRASP desktop
above, as well by underlining in
Browse tab at left and on
windowbar below.

Getting Started (v1.8.6)
3/5/2007

2.12 Closing a File
The open files in CSD windows can be closed in several ways.

(1) If the CSD window is maximized, you can close window and file by clicking the
Close button at the right end of the top level Menu.

(2) If the CSD window is not maximized, click the Close button in the upper
right corner of the CSD window itself.

(3) File Menu – Click File – Close or Close All Files.

(4) Window Menu – Click Window – Close All Windows.

In each of the scenarios above, if the file has been modified and not saved, you will be
prompted to Save and Exit, Discard Edits, or Cancel before continuing. After the files
are closed, your Desktop should look like the figure below, which is how we began this
tutorial.

Figure 2-22. Desktop with all CSD Windows closed

Getting Started (v1.8.6)
3/5/2007

2.13 Exiting jGRASP
When you have completed your session with jGRASP, you should always close (or
“exit”) jGRASP rather than let your computer close it when you log out or shut down.
However, you don’t have to close the files you have been working on before exiting
jGRASP. When you exit jGRASP, it remembers the files you have open, including their
window size and scroll position, before closing them. If a file was edited during the
session, jGRASP prompts you to save or discard the changes. The next time you start
jGRASP, it will open your files, and you will be ready to begin where you left off. For
example, open the Hello.java file and then exit jGRASP by one of the methods below.
After jGRASP closes down, start it up again and you should see the Hello.java program
in a CSD window. This feature is so convenient that many users tend to leave a few files
open when they exit jGRASP. However, if a file is really not being used, it is best to go
ahead and close the file to reduce the clutter on the windowbar.

Close jGRASP in either of the following ways:

(1) Click the Close button in the upper right corner of the desktop; or

(2) On the File menu, click File – Exit jGRASP.

2.14 Exercises

(1) Create your own program then save, compile, and run it.

(2) Generate the CSD for your program. On the View menu, turn on Auto Generate
CSD (Settings – CSD Window Settings – then (checkbox) Auto Generate CSD).

(3) Display the line numbers for your program.

(4) Fold up your program then unfold it in layers.

(5) On the Build menu, make sure Debug Mode is ON (indicated by a check box). [Note
that Debug Mode should be ON by default, and we recommend that this be left ON.]
Recompile your program.

(6) Set a breakpoint on the first executable line of your program then run it with the
debugger. Step through each statement, checking the Run I/O window for output.

(7) If you have other Java programs available, open one or more of them, then repeat
steps (1) through (5) above for each program.

Getting Started (v1.8.6)
3/5/2007

2.15 Review and Preview of What’s Ahead
As a way of review and also to look ahead, let’s take a look at the jGRASP toolbar.
Hovering the mouse over a button on the toolbar provides a “tool hint” to help identify its
function. Also, View – Toolbar Buttons allows you to display text labels on the buttons.

While many of these buttons were introduced in this section, some were assumed to be
self-explanatory (e.g., Print, Cut, Copy, etc.). Several others will be covered in the next
section along with Projects and the Object Workbench (e.g., Generate UML, Generate
Documentation, Create Object, and Invoke Method). Section 9 provides an in depth look
at the CSD, which can be read at any time, but is most relevant when control structures
are studied (e.g., selection, iteration, try-catch, etc).

Open File

Save File

Set Browse Tab to directory of current file

 Print

 Cut Copy Paste Undo last edit

 Generate CSD Remove CSD Toggle Line Number Freeze line numbers

Generate CPG Generate UML Generate Documentation

 Compile Run Run Debug
 Applet

TIP: Right-click here to turn
menu groups on or off.

 Debug Create Invoke
 Applet Object Method

	Getting Started
	Starting jGRASP
	Quick Start - Opening a Program, Compiling, and Running
	Creating a New File
	Saving a File
	Generating a Control Structure Diagram
	Folding a CSD
	Line Numbers
	Compiling a Program – A Few More Details
	Running a Program - Additional Options
	Using the Debugger
	Opening a File – Additional Options
	Closing a File
	Exiting jGRASP
	Exercises
	Review and Preview of What’s Ahead

