
Exploiting Parallelism in Computer Vision
 Prof. Joshua Stough, Paul Nguyen ‘13, Lee Davis ‘ 13, Department of Computer Science

Washington and Lee University

Motivation

RE Lee Summer Scholar Program, Lenfest Grant, Steve Goryl

Results

Improvements
•Parallelism – splitting up work into parts to use multiple processors for faster completion

•Low level programming - “closer to the hardware” programming. Reduces abstraction from binary instructions the

hardware executes, which reduces computational overhead. Allows significant code optimization.

•Principal Component Analysis (PCA) - statistical tool used for dimensionality reduction in SIFT features. Reduces

the amount of work, which allows for speed increase.

•Various Metrics – tried various metrics to compare the “similarity” of images.

PCA applied to SIFTS. Reduced dimensions from 128xN to

60xN with similar precision and accuracy as shown above.

Gather SIFTs

Pipeline: Extract features from the training images

Parallelism: Job Distribution via Python Scripting

Acknowledgements

Test
Pipeline: Apply Support Vector Machine

to Test images.

Parallelism: Job Distribution via Python Scripting

Support Vector Machine

Pipeline: Classifies objects

Parallelism: Job Distribution via Python Scripting

Pooling

Pipeline: Organize SIFTs based on locality

Parallelism: Job Distribution via Python Scripting

Cluster

Pipeline: Organize SIFT features

Parallelism: The cluster job is using

Mex and C++

To improve our object recognition algorithm’s speed through parallel programming in order to

implement more complicated features that will yield more accurate results.

Split up work
Rest of

Program

Processor 2

Processor 3

Processor 4

Processor 1

Reorganize Data Main Program

High Level Languages Low Level Languages

MATLAB
function [D] = euclideanDistance(X,C)

k = size(C,2);

n = size(X,2);

D = zeros(k, n);

for i = 1:k

 D(i,:) = sum((X - repmat(C(:,i),[1 n])).^2);

end

end

C
#include <omp.h>

#include "mex.h"

void mexFunction(int nlhs, mxArray *plhs[], int nrhs,const mxArray *prhs[]){

 unsigned int i, i2, j, D = mxGetM(prhs[0]), N = mxGetN(prhs[0]), K = mxGetN(prhs[1]);

 plhs[0] = mxCreateDoubleMatrix(K, N, mxREAL);

 double *restrict X = mxGetPr(prhs[0]), *restrict C = mxGetPr(prhs[1]), *restrict DM = mxGetPr(plhs[0]);

 #pragma omp parallel for

 for(j=0; j<N; j++)

 for(i=0; i<K; i++){

 DM[i+j*K]=0;

 for(i2=0; i2<D; i2++)

 DM[i+j*K]+=(X[D*j+i2]-C[D*i+i2])*(X[D*j+i2]-C[D*i+i2]);

 }

}

Figure 2 - With PCA. Less data to compute with little loss in accuracy Figure 1 - No PCA. Red/Green shows data variance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Object Categories

Average Precisions of Object Classes

No PCA

PCA

2
.9

9
7
4

1
.4

3
9
7
1
5

1
.0

1
1
2

0
.9

3
2
4

0
.1

2
5
7

0
.0

5
6
6
0
6

0
.1

6
7
1

0
.0

6
9
4
9
7

0
.1

5
6
8

0
.0

5
2
2
7
8

0

0.5

1

1.5

2

2.5

3

3.5

Input Data: 150,000 Points and 150 Clusters Input Data: 75000 Points and 75 Clusters

T
im

e
 i

n
 S

e
c
o

n
d

s

Euclidean Distance Computation Times

MATLAB

MEX

Pthreads

OpenMP

CUDA

3
2
2
0
.7

3
5
9
3
8

8
8
4
.4

9
2
7
7
6

5
8
9
.4

1
5
4
7
4

1
8
1
.9

8
4
3
8
3

1
4
8
.9

1
3
8
9
3

5
5
.1

2
2
9
2
9

0

500

1000

1500

2000

2500

3000

3500

Input Data: 150,000 Points and 150 Clusters Input Data: 75000 Points and 75 Clusters

T
im

e
 i

n
 S

e
c
o

n
d

s

Cluster Computation Times

MATLAB

MEX

OpenMP

•MATLAB - high level scripting language. Very slow.

•MEX (Matlab Executable) code – MATLAB calling C code. Very fast.

•OpenMP (Open Multi-Processing) and Pthreads (POSIX threads) – runs in

parallel on multiple cores of a processor.

•CUDA (Compute Unified Device Architecture) - main computing engine on

most NVIDIA graphics cards. Allows general purpose computation.

Client Computer

Host Computers

Computer Jobs

High Level Parallelism- send parts of each step, except clustering, to different

computers to execute in parallel via Python. Machine Code

10010010

10011010

01100110

00101101

 Python

commands = ["matlab -nodisplay -r \"cd %s; doSiftstep();\””

 for number in range(10)]

processCommandsInParallel(commands)

