
Mobile App Development to Support Bell’s Palsy Diagnosis
Nick Johnston

Advisors: Dr. Keith Buffinton1, Dr. Joshua Stough2, Dr. Arun Gadre3

 1Department of Mechanical Engineering / 2Department Computer Science, Bucknell University, Lewisburg, PA
3Geisinger Commonwealth Medical School, Geisinger Medical Center

● Goal: Develop a mobile application capable of using
computer vision and machine learning to assist
clinicians in their diagnosis of patients suffering from
facial nerve paralysis (FNP).

● Observer bias commonly arises when FNP patients
are seen and diagnosed by clinicians[1], which
showed that a machine learning (ML) based
approach found less facial asymmetry in severe
FNP patients and more asymmetry in healthy faces
than clinicians. Meaning there is a tendency to over
diagnose severe cases and under diagnose minor
cases

1) The home screen offers two options: “Start a new session” and “View
previous session”

2) “Start a new session” leads to a page to input patient details and
seven photos using different facial expressions.

3) To input photos, the user can either select from their camera roll or
take a new picture using the provided camera.

4) After all the photos have been taken, the user is then prompted to
record a video.

5) Once the video has been taken and confirmed, the user is brought to a
final preview screen to confirm all seven pictures and the video have
been correctly recorded.

6) The final screen displays the relevant calculations and plotted images.

● [1] Miller, Matthew Q., et al. “The Auto-eFACE: Machine Learning-Enhanced Program
Yields Automated Facial Palsy Assessment Tool.” Plastic and reconstructive surgery vol.
147, 2 (2021): 467-474. doi:10.1097/PRS.0000000000007572

● [2] Meta (2015). React Native (Version 0.71.8). https://reactnative.dev/
● [3] Huo, Bingnan. “Facial Nerve Paralysis Grading by Computer Vision and Machine

Learning.” Bucknell University, 2022. Git Repository:
https://github.com/BingnanHuo/bp_research

● [4] Pallets Project (2010). Flask (Version 2.3.2) https://flask.palletsprojects.com/en/2.3.x/
● https://stackoverflow.com/

Background & Motivation

App Infrastructure

General App Flow

References
The user interface has been designed to effectively present all the
necessary information and interactive aspects, given the limited space
available on a mobile device.
● Using icons for buttons instead of text saves space and gives the app

a more polished look.
● Contrasting colors and functional text to speech and icon to speech,

makes the app more accessible to those with disabilities

User Interface and Design

Privacy and Medical Data
This app works with medical information which is sensitive
data, as such the following steps were taken to reduce the
associated risks.
● The app is built so that information relating to a patient is

never directly saved. All images are stored via links to the
location on the doctors phone, which can be removed at the
doctor’s discretion, and videos are deleted shortly after
analyzing them.

● Additionally, the back-end server does not save image or
video data beyond the scope of the current process.

● Because personal, sensitive data is only ever saved locally
on the doctor’s device the app leverages the advanced
security systems that companies like Apple and Google
already have in place to protect the patients’ information.

● The mobile application was built using the open source software framework,
React Native [2], which allows developers to simultaneously develop
applications for IOS and Android devices using a single code base written in
JavaScript.

● The computer vision and machine learning algorithms [3] have been
developed in Python which posed new challenges as JavaScript and Python
are not able to communicate directly with each other. To solve this problem a
back-end server was developed using a Python-based Flask server [4] to allow
for real-time communication between the two languages.

● With this framework in place, users are able to send data created in React
Native to the Flask server where appropriate computations are performed
before sending the data back to React Native, where the results are displayed.

Future Work
Now that the fundamental functional goals for the app have
been implemented, future research can focus on general
improvements and refining the infrastructure, including:
● Converting the developmental back-end server to a full-time

working server.
● Incorporating updates made to the machine learning

algorithms to achieve more applicable results.
● Developing faster ways to process image and video data for

increased efficiency.
● User testing to polish interfaces and make the app more

user friendly.

React Native Front-End
(JavaScript)

React Native Front-End
(JavaScript)

Flask Back-End Server
(Python)

(1)

(2)

(3)

(4)

(5)

(6)

