
FACIAL PALSY IMAGE

PROCESSING RESEARCH REPORT

BINGNAN HUO (NICK)

BACKGROUNDS

Facial nerve paralysis (FNP) is a medical condition that affects the ability of individuals

to control certain facial muscles. One of the most common forms of FNP is Bell's Palsy,

which affects approximately 4 out of 10,000 people in the United States each year.

People with Bell's Palsy experience one or, in rare cases, both sides of their face

becoming unresponsive. The exact cause of Bell's Palsy is unknown, and it typically

takes up to six months or longer for a patient to recover after being affected.

In the past, all diagnoses of FNP were made by doctors based on their subjective

judgement and professional experience. However, previous research [1] has shown that

observer bias is common when FNP patients are seen and diagnosed by clinicians, and

that a machine learning (ML) based approach found less facial asymmetry in severe

FNP patients and more asymmetry in healthy faces than clinicians.

The goal of the research project discussed in this report is to develop software that uses

computer vision and machine learning techniques to grade the severity of FNP and

assist in the diagnosis and recovery tracking of patients with FNP using the

1

House-Brackmann scale. The aim is to provide doctors and patients with another tool

that can be used for reference and potentially reduce bias in diagnosis.

To achieve this goal, the research project will follow a framework similar to that used in

other studies with similar goals. This includes:

1. Using an ML-based landmark localizer to determine the locations of key facial

anatomical points (landmarks) on an image of the face

2. Correcting for head tilt or perspective distortion using geometric or ML algorithms

3. Calculating asymmetry in the face using some algorithmic method

4. Using an algorithmic or machine learning-based approach to translate the

asymmetry measurements into classifications.

LITERATURE REVIEW

These are the most important studies we used in our work

Guarin [2] published Emotrics, the landmark predictor various studies

have used. We are also using Emotrics. Emotrics uses dlib to predict

for 68 key facial landmark points. It included several trained models,

including one trained using the iBUG 300-W dataset and the MEEI

facial palsy dataset [3]. We will be using the MEEI model as it is

trained on the MEEI dataset [3] that consists of 60 patients with a

spectrum of types and severities of FNP. Guarin wrote Emotrics with

the intention of creating an app that would help doctors measure

facial asymmetries. Thus, Emotrics has a GUI, built with PyQt5. However, we are only

interested in using the part of code that would extract the facial landmarks from input

images.

2

http://dlib.net/
https://ibug.doc.ic.ac.uk/resources/300-W/
https://drive.google.com/drive/folders/10QlZylzXso5aluhOPPfZJB0t6dKjb7g6?usp=sharing
https://drive.google.com/drive/folders/10QlZylzXso5aluhOPPfZJB0t6dKjb7g6?usp=sharing

Bandini [4] explained that having specific patient-population-trained models or

fine-tuning pretrained models (using the general population) will lead to lower prediction

errors measured by nRMSE%.

Gemma Parra-Dominguez’s study [5] is fundamental to our work. We are mainly

incorporating his proposed framework and adding the severity grading functionality in

the final step.

Gemma proposes to use 51 landmark points instead of 68 as the jaw line is not the

main concern for evaluating illness or severity grading of facial palsy. Gemma also

defined a set of distances and features, found through a ML program. Gemma’s work

used a Multilayer Perceptron Network to differentiate between healthy & ill images.

3

METHODS

Our code can be found in the bp_research repo.

OVERALL PROCESS

Gemma’s work [5] demonstrated successful application of ML in determining whether a

face is healthy or ill with FNP by using the ML-based software Emotrics [2] to

automatically predict key facial landmarks from facial images and then computing facial

features to determine health or illness.

We acquired Emotrics from its GitHub Repo. The most important piece of code that was

used for prediction was in GetLandmarks.py. Then, our process is mostly as follows:

1. First, load the image with cv2.

2. Use Emotrics’ landmark localizer to predict for landmarks

3. Tilt correction

4. Distances (with optional scaling) and features computation

5. ML model (SVM / XGBoost / MLP) for severity grading or healthy/ill

classification

Now, we will go into a bit more detail about how the Emotrics code works

(Get_Landmarks) in predicting landmarks.

Get_Landmarks is a class object that handles the image input and landmark

predictions. It requires images stored in numpy arrays (e.g. 2000*1000*3) and a string

specifying which pre-trained model (e.g. “iBUG”, “MEE”, etc.) to use for landmark

prediction. It will store the predicted landmark results in Get_Landmarks._shape, which

4

https://github.com/BingnanHuo/bp_research
https://github.com/dguari1/Emotrics

is a (68*2, int16) numpy array. Methods to process the eye area and predict the location

and size of the eyes are included. But we won’t heavily utilise this.

The specific process is:

1. Given the loaded image, it first rescale the image to a smaller width (200px) and

convert it to grayscale. Choosing larger image resolutions will lead to increased

processing time. Moreover, after testing on datasets with ground truth information,

we found that having a higher width or colored image did not provide any significant

benefit.

2. dlib is then used in Emotrics’ code to predict for 68 landmark points.

3. In ProcessResults.py, we process the predicted landmarks in methods mentioned

by Gemma:

Remap the 68 points to 51 points, as defined by Gemma

Correct for head tilt by using specific landmark points on the left and right side

of the head (point #48 and #49). We calculate the angle formed by these two

points and rotate the set of predicted landmarks by this angle in the opposite

direction.

Something that can be tried for future work: after initial rotation of image and

landmarks, run prediction on rotated image again. Since rotations can lead to

5

worse accuracy in prediction, this initial adjustment should bring better accuracy

in further predictions.

Then we calculate the Distances between landmarks and Features, as algebraic

summaries of the distances, according to Gemma’s definition.

i. We calculate the Euclidean distance between certain landmark points.

ii. (Optional) We could also scale these distances by assuming the iris

diameter or distances between eyes to be the population average, and then

compute a pixel scale (mm/pixel); or by using the bounding boxes to

normalise every photo – translating distances into proportion of bounding

box diagonal length. This step is not necessary for the next step in feature

computations, but it can be helpful when we want to compare different

images with just landmark distances directly. Refer to

ProcessResults.scale_results() and ProcessResults.scale_by_bbox()

iii. The features we compute are algebraic or geometric operations – such as a

ratio, a degree, or a slope – that use the landmark distances and summarise

asymmetries in the face. These results should be unaffected by scaling of

the distances, since the features are relative to the distances.

iv. These Distances and Features are stored in python dictionaries.

Results can be exported to csv files (named “dists.csv” and “features.csv”) using

ProcessResults.save_results(). Alternatively, distances and features can be

6

individually exported with ProcessResults.save_dists() or

ProcessResults.save_features().

4. With the computed features, we can then feed them into a machine learning

algorithm for severity grading.

We have attempted using random forest, XGBoost, SVM, Multilayer Perceptron

Network. But we were not able to achieve the prediction accuracy in published

papers.

EVALUATING LANDMARK PREDICTOR

While testing the Emotrics landmark predictor, we noticed that it often produces

inaccurate results, though they are not too far off. Regardless, we decided to carefully

evaluate its performance. Later, we also tested it through the Toronto Neuro Face

dataset, which contains ground truth landmarks, by calculating the Root Mean Squared

Error (RMSE) for our predicted landmarks.

Despite the dlib prediction method being deterministic (implemented via cascade of

regression trees), we observed that small changes to the input image could lead to

somewhat different predictions. This is against the claim that it would “provide accurate

facial landmark localization results under multitude of pose, illumination, and expression

conditions.” Thus, we tried to apply test-time augmentations, which could help to deal

with the randomness in prediction results. We implemented the test-time augmentation

in LandmarkTester.py with:

i. Random rotations of the image

● LandmarkTester.test_random_rotation()

7

● We noticed that large rotations produce less accurate predictions. This

is also why we need to correct for head tilt.

ii. Add noise to the image or shifting the overall intensity (brightness) of an

image

● LandmarkTester.test_intensities() & LandmarkTester.test_noises()

● We also observed that larger noise results in less accurate prediction.

iii. We repeat these processes on 30 or 40 images to augment them. The

landmarks predicted from these augmented images will then be used to

calculate the median landmark.

● We hypothesised that the median will be more accurate than the

predicted landmarks. And we later tested this with RMSEs.

While predicting for the landmarks of one image can take from 0.5 seconds to 4

seconds depending on the the dimension of the given image, this can add up to be quite

8

a long time in test-time augmentation as we repeatedly predict the landmarks. Thus, we

are looking for ways to speed up this process. As dlib predictions only run on the CPU

single-thread, we then tried to speed things up by implementing multiprocessing. It

provided roughly 5x+ speed improvements.

We used the multiprocess library, which is different from the multiprocessing library.

Basically, we will let all of our CPU threads perform these single-threaded augmentation

(adding rotations & noise and landmark predictions) at the same time. We rely on the

“with … as pool” and pool.map().

In test_emotrics_parameters.ipynb, we ran a test comparing if some parameters will

lead to better accuracy (i.e. lower RMSE). The four different sets of parameters are:

1. Original: 200px width, grayscale image

2. Original colored: 200px width, colored image

3. Hi-res: 300px width, grayscale image

4. Hi-res colored: 300px width, colored image

In addition, we are also doing test-time augmentations to compute the median

landmarks associated with each set of parameters. For each image, we will also

normalise their RMSE value by the bounding box size. Without normalising, we would

not be able to compare the RMSE of different images.

9

https://pypi.org/project/multiprocess/
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing

DATASET I/O TOOLS

Toronto Neuro Face dataset

DatasetTester.py is used to load and use the TNF dataset. This dataset is stored first by

patient type, then by frames (images) and ground truth landmarks & bounding boxes.

Inside the landmarks folder, we can find files corresponding to some patient doing some

task. In these files, we can find that several frames of the patient doing that task have

been labelled with the ground truth landmarks. We then use the file names of these

landmarks files to separate the different patients, tasks, and frames.

These data are stored in a nested dictionary containing information on all the patients.

Each patient in the patient's dictionary is also a dictionary. And each patient will have

tasks. In each task dictionary, there are different frames. For each of the frame

dictionaries, the ground truth landmarks, bounding boxes, and images are stored there.

And only with this dataset, we were able to evaluate Emotrics’ performance with respect

to the different parameters. (See test_emotrics_parameters.ipynb.)

MEEI dataset

In dataset_loading_MEEI.ipynb, we loaded the MEEI dataset. We mainly extracted

necessary information, such as patient category and #id, and patient severity, from the

10

excel spreadsheet provided with the dataset. Using those information, we then used

pathlib to create the folder paths for each individual patient. In each folder, 8 images

and 1 video of the patient doing each of 8 assigned tasks (see info sheet in the dataset

folder). Unfortunately, the dataset we acquired from MEEI does not contain the ground

truth landmarks for each patient (mentioned in Guarin’s paper). Further attempts can be

made to contact Guarin and acquire that dataset.

After all the folders were being located, we loaded each image, its predicted landmarks,

calculated features, and severity grade on the House-Brackmann scale to their

respective np arrays. With these data, we then were able to look at the distribution of

features and separability of data in the MEEI dataset. This allowed us to better

understand what the data is like, and will help in the later step when building the

machine learning model for severity grading.

BUILDING ML MODELS

Before building the machine learning models, we want to at least have a grasp of what

our data looks like. Therefore, we created different visualisations to help us understand

the distributions of patient features, the separability, and the variability of the data.

11

https://docs.python.org/3/library/pathlib.html

a. Histograms on distributions of features from healthy people from the TNF

dataset. While this is not on the patient distribution. We are able to highlight

certain characteristics (features) that specific patients are abnormal relative to

healthy patients. For this patient though, it seems that most of the features are

within the “normal” range, except maybe f13, where the patient is at the upper 80

percentile.

b. We can also see the distributions of patient features, grouped by their severity, to

better understand how much the data are overlapping, for different severity

groups. These are plots generated from the MEEI dataset.

12

These graphs revealed that the MEEI data, in fact, has a lot of overlap in features

between patients of different severities. Thus, it will likely be hard for the machine

learning model to correctly grade their severities.

c. The t-scne plot is another method to see the variability and

distribution of high dimensional data on lower dimensions

such as 2D. However, this plot also indicates that our data

is hard to separate between the severity groups.

d. Principal Component Analysis is also doing something

similar. Here, we are reassigning the basis, and we are

displaying the first two PCA directions. We are also seeing

that features from all severities are clustered together.

After having a preview of the data. We hope that applying data scaling will lead to better

machine learning model performance. Finally on the machine learning model, in

MEEI_mlp_sklearn.ipynb, we tried to rescale the features using

● StandardScaler: standardise features by subtracting the mean and scaling to unit

variance

● MinMaxScaler: scale features so that all of them are between 0 and 1

● PowerTransformer (Box-Cox): apply a power transform featurewise to make data

more Gaussian-like

● QuantileTransformer (Gaussian): transform features using quantiles information

However, using scikit-learn to implement a MLP only got us about 80% accuracy. This is

not great compared to Gemma’s results [5]. Trying to grade the severity yielded even

worse results: around 40% accuracy. More work still needs to be done regarding the

13

https://towardsdatascience.com/all-about-feature-scaling-bcc0ad75cb35
https://scikit-learn.org/

machine learning model or the landmark predictor before this can actually be helpful,

grading patient severities in a practical sense.

INSTALLATION GUIDE

Mainly for linux

1. Install Nvidia Drivers, Cuda Toolkit and cuDNN

2. Install conda/miniconda and optionally mamba

3. Load the bp conda environment (which includes all necessary Python libraries)

with bp.yml file by running: conda env create -f bp.yml

4. If loading the conda environment was not successful, try to create your own

conda environment with these packages and Python 3.10: opencv, dlib,
multiprocess, numpy, scipy, scikit-learn, matplotlib, pandas, and potentially

others not mentioned here.

FUTURE WORK

While we attempted to recreate the results in Gemma

(classifying patient and non-patient), the highest accuracy

14

https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html
https://mamba.readthedocs.io/en/latest/installation.html
https://drive.google.com/file/d/1VxIDr4r6lI-sq2YFE5xBlVtrZPceQCNS/view?usp=share_link
http://dlib.net/

we have achieved on the MEEI dataset was only around 80% with cross-validation,

lower than the 95%+ accuracy claimed in the paper. Future work could try to build better

machine learning models to achieve better classification accuracy.

Moreover, more work is still needed to develop a mobile APP that acts as the interface

for capturing patient images and getting predicted severity gradings.

REFERENCES

[1] Miller, Matthew Q., et al. “The Auto-eFACE: Machine Learning-Enhanced Program

Yields Automated Facial Palsy Assessment Tool.” Plastic and reconstructive surgery

vol. 147, 2 (2021): 467-474. doi:10.1097/PRS.0000000000007572

[2] Guarin, Diego L., et al. “Toward an Automatic System for Computer-Aided

Assessment in Facial Palsy.” Facial plastic surgery & aesthetic medicine vol. 22, 1

(2020): 42-49. doi:10.1089/fpsam.2019.29000.gua

[3] Greene, Jacqueline J., et al. “The spectrum of facial palsy: The MEEI facial palsy

photo and video standard set.” The Laryngoscope vol. 130, 1 (2020): 32-37.

doi:10.1002/lary.27986

[4] Bandini, Andrea, et al. “A New Dataset for Facial Motion Analysis in Individuals With

Neurological Disorders.” IEEE journal of biomedical and health informatics vol. 25, 4

(2021): 1111-1119. doi:10.1109/JBHI.2020.3019242

[5] Parra-Dominguez, et al. “Facial Paralysis Detection on Images Using Key Point

Analysis.” Appl. Sci. 2021, 11, 2435. https://doi.org/10.3390/app11052435

15

