KIICKNA UNIVERSITY

Motivation

- Echocardiography segmentation using convolutional neural network (CNN) is a promising solution for diagnosis of cardiovascular disease.
- The performance of such machine learning models trained from a particular source domain, when transferred to a different target domain can drop unhelpfully[1].
- We want to integrate and analyze domain adaptation techniques to build a CNN for echocardiography segmentation that generalizes well across datasets and outperforms other models that do not use domain adaptation.

Datasets and Experiment Setup

- We have two datasets of echocardiogram images: CAMUS[2] and EchoNet[3]. The experimental setup for this research is: • 1. Train on CAMUS dataset, Test on EchoNet dataset (current
- standard, baseline)
- 2. Train on EchoNet dataset, Test on EchoNet dataset (best possible performance, only possible when you have enough annotated data in target domain)
- 3. Domain adaptation train on CAMUS and EchoNet dataset, Test on EchoNet dataset (expect to perform better than 1 and hopefully close to 2)

Domain Adaptation on Segmentation of Echocardiography Junyang Cai

Advisors: Dr. Joshua Stough¹, Dr. Christopher Haggerty² ¹Department of Computer Science Bucknell University, Lewisburg, PA ²Translational Data Science and Informatics, Geisinger Health Group

Modified Unet-GAN

- anatomical structure the same.

• Yan et al. [1] proposed a generic framework called Unet-GAN which can translate an image from a source domain to a target domain in the absence of paired examples while keeping the

• We modified the Unet-GAN by including training the Unet model through the training process of the GAN to ensure our Unet model become more generalized on both domains.

Example of one case

Modified Unet-GAN translated image from

Echonet domain to

Segmentation result from Unet on trained on CAMUS

• Mean absolute error of EF from 1264 patients: • 11.47% on Unet CAMUS (experiment 1) • 11.29% on original Unet-GAN • 9.84% on Modified Unet-GAN (experiment 3) • 6.91% on Unet EchoNet (experiment 2)

problems.

• Our modified Unet-GAN with colearning image translation and segmentation is better than original Unet-GAN.

• [1] Yan, W.; Wang, Y.; Gu, S.; Huang, L.; Yan, F.; Xia, L.; Tao, Q. The domain shift problem of medical image segmentation and vendor-adaptation by Unet-GAN. arXiv 2019, arXiv:1910.13681.

JAISIN

Results

Conclusions

• Domain adaptation can help overcome domain shift

References

• [2] J.V. Stough, S. Raghunath, X. Zhang, J. M. Pfeifer, B. K. Fornwalt, and C. M. Haggerty, "Left ventricular and atrial segmentation of 2D echocardiography with convolutional neural networks" https://doi.org/10.1117/12.2547375

• [3] Ouyang, D., et al.: Video-based ai for beat-to-beat assessment of cardiac function. Nature 580(7802), 252–256 (2020)

Acknowledgement

 Bucknell University Department of Computer Science Bucknell Geisinger Research Initiative. • Ciffolillo Healthcare Technology Inventors Program