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ABSTRACT

Neural network-based video segmentation has proven effective in producing temporally-coherent segmentation
and motion tracking of heart substructures in echocardiography. However, prior methods confine analysis to
half-heartbeat systolic phase clips from end-diastole (ED) to end-systole (ES), requiring the specification of
these frames in the video and limiting clinical applicability. Here we introduce CLAS-FV, a fully automated
framework that extends upon this prior work, providing joint semantic segmentation and motion tracking in
multi-beat echocardiograms. Our framework first employs a modified R2+1D ResNet stem, which is efficient
in encoding spatiotemporal features, and further leverages sliding windows for both training and test time
augmentation to accommodate the full cardiac cycle. First, through 10-fold cross-validation on the half-beat
CAMUS dataset, we show that the R2+1D-based stem outperforms the prior 3D U-Net both in Dice overlap
for all substructures, and in derived clinical indices of ED and ES ventricular volumes and ejection fraction
(EF). Next, we use the large clinical EchoNet-Dynamic dataset to extend our framework to full multi-beat video
segmentation. We obtain mean Dice overlap of 0.94/0.91 on left ventricle endocardium in ED/ES phases, and
accurately infer EF (mean absolute error 5.3%) over 1269 test patients. The presented multi-heartbeat video
segmentation framework promises fast and coherent segmentation and motion tracking for the rich phenotypic
analysis of echocardiography.
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1. INTRODUCTION

Echocardiography is a ubiquitous imaging modality for diagnosing and managing patients with cardiovascular
disease.1 Precise delineations of left ventricular endocardium (LVendo) in echo support accurate derivation
of ventricular volumes and ejection fraction (EF), which are important clinical indices. Cardiologists often
inspect a multi-heartbeat echocardiogram and manually annotate the cardiac structures in one or more pairs
of end-diastole (ED) and end-systole (ES) frames when inferring the patient’s EF. Manual annotation in noisy
ultrasonic images is labor-intensive and subject to high inter-rater variability.2 Consequently, the segmentation
of echocardiography using deep learning networks has been extensively studied to automate this process.

Promising echocardiography segmentation has been achieved by a variety of deep learning methods, including
data-augmented frame-level segmentation,3 frame-level segmentation guided by recurrent learning on spatiotem-
poral features,4 and a combination of frame-level segmentation and a separate model for regressing on EF.5

An emergent joint video segmentation and motion tracking network proposed by Wei et al.,6 CLAS, recently
proved superior in producing annotations that are consistent with cardiac motion.7 CLAS improved the derived
left ventricular end-diastolic volume (EDV), end-systolic volume (ESV), and EF estimation on the published
CAMUS dataset8 of echocardiograms in apical two (AP2) and four chamber (AP4) views.

However, when segmenting a typical clinically-acquired multi-beat echocardiogram, the framework would
require a clinician’s intervention or other out-of-band process (e.g, frame-level segmentation7) to identify each
half-beat. Moreover, the CLAS framework confines its analysis to ED-to-ES half-heartbeat video clips provided
by the CAMUS dataset. This latter requirement, in particular, relegates CLAS’s applicability to systolic phase
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analyses (i.e., the contractile phase of the heart cycle), precluding its ability to characterize diastolic function
(i.e., the filling/relaxation phase of the heart cycle), which is highly relevant to many forms of heart disease
including heart failure and valvular disease.9

We introduce CLAS-FV to completely automate full video, multi-beat echocardiogram segmentation, extend-
ing the CLAS framework with application to the large EchoNet-Dynamic dataset introduced by Ouyang et al.5

CLAS-FV uses R2+1D spatiotemporal feature extraction, improving upon CLAS’s 3D U-Net (see Sec. 2.1). We
train the network using fixed-length clips that subsume the systolic phase, modifying the loss structure of CLAS
to accommodate more of the cardiac cycle (Sec. 2.2). When segmenting an echocardiogram with multiple heart-
beats, we divide the video into non-overlapping clips and then concatenate the results. We address potential
discontinuities at clip boundaries through a limited sliding windows test time augmentation and label fusion
(Sec. 2.3). Experimental results on both the CAMUS and Echonet-Dynamic are reported in Section 3.

2. ARCHITECTURE AND METHODS

In CLAS-FV, we use a shared feature extractor based on the R2+1D ResNet proposed by Tran et al.10 for video
action recognition. R2+1D ResNet has also been used for EF regression on multi-heartbeat echocardiogram in
Ouyang et al.’s work.5 The R2+1D convolutional block consists of a spatial 2D convolution followed by a temporal
1D convolution. This deconstruction accelerates the optimization and increases the network’s nonlinearities,10

which for us allow analyses of dynamic cardiac motion.

Our R2+1D-based shared feature extractor takes in an ordered sequence of echocardiogram frames and out-
puts a 64-channel feature map that has the same spatial and temporal shape as the input. To do this we capture
the feature map outputs at all 5 R2+1D blocks along the ResNet encoder (output dimension 64, 64, 128, 256, 512),
upsampling and concatenating the feature maps before reducing the channel depth through successive 3D convo-
lutions (1024→ 64→ 64, kernel size 1). The shared feature map is then sent to a segmentation head consisting
of a 3D convolution layer and Softmax to acquire the putative segmentation of the input video over all frames
(output dimension equal to the number of classes), and separately sent to a motion tracking head with a 3D
convolution layer to derive bi-directional motion fields (output dimension 4); both task heads use kernel size 1.

2.1 R2+1D Versus 3D U-Net Feature Extraction

We validate the efficacy of the R2+1D-based shared feature extractor in producing both better segmentations and
derived clinical indices, on the CAMUS dataset8 containing systolic phase half-heartbeat echocardiograms. In a
10-fold cross-validation experiment, we compare R2+1D-based CLAS (∼32M parameters) to the original CLAS
and its 3D U-Net11 (∼19M parameters), and to a larger 3D UNet (∼34M parameters) where the intermediate
feature map depths are modified to approximate the same number of trainable parameters. The networks are
trained on sampled 10-frame ED-to-ES video clips with spatial size 128× 128, intensity normalized to [−1, 1].

Segmentation performance is measured by Dice overlap, D(yauto, ytrue) = 2(yauto∩ytrue)
|yauto|+|ytrue| . We further derive

the LVendo volume through the Simpson’s biplane method of disk,12 which approximates the left ventricle as
contiguous elliptical cylinders. The semi-major and semi-minor axes of elliptical cylinders are measured by the
widths of segmented LVendo in AP2 and AP4 views. The ejection fraction of a patient is the percentage change
in LVendo from ED to ES, EDV−ESV

EDV × 100%.

2.2 Full Video Segmentation and Motion Tracking

Beyond the updated feature stem, CLAS-FV learns full cardiac cycle segmentation through supervised learning
on the EchoNet-Dynamic multi-beat dataset,5 and through numerous changes to the loss structure associated
with the motion tracking head. We train CLAS-FV with 32-frame video clips that subsume the manually denoted
ED-to-ES sequence and its annotated boundary frames. Data augmentation is introduced by randomizing the
clip start, such that training clips include more or fewer diastolic phase frames on either side of the denoted
systolic phase sequence.

We modify the CLAS-FV loss structure to accommodate these variable starting points in the echo video
sequence. Initially in Wei et al.’s CLAS framework, appearance level motion tracking is supervised by a com-
bination of local cross correlation loss13 and smoothness loss14 called OTA. We replace OTA with a combined
mean squared error loss and Huber loss,15 which has proven effective in motion tracking in magnetic resonance.16



This change in appearance level motion tracking then affects the downstream losses in CLAS-FV. The output
motion fields are used to spatially transform the two available labeled frames, from ED and ES fully forward in
time to the end of the clip and fully backward to the beginning, to generate pseudolabels at all frames. Additional
losses from Wei et al.6 then compare these pseudolabels to the output of the segmentation head (SGS, binary
cross-entropy) or to the ground truth labels themselves at the ES and ED frames respectively (OTS, multi-class
dice). An additional binary cross-entropy loss trains the segmentation head separately (SGA).

The network is trained for 8 epochs using Adam optimizer with initial learning rate 1× 10−4. The learning
rate is reduced to 1× 10−5 after 3 epochs. The Huber loss is weighted by 0.005, and all other losses are equally
weighted by 1. The model weights are saved with minimized loss on the validation set.

2.3 Test-time Augmentation and Clinical Indexing

When segmenting a multi-beat echocardiogram at test time, we divide the video into contiguous 32-frame clips,
interpolating the video if necessary. On average, we obtain 5.6 32-frame clips from each test echocardiogram.
The network segments all clips separately, and we concatenate the results to form a full video segmentation. Test
time augmentation is used to improve coherence of resulting areas at the boundaries of these non-overlapping
clips, repeating the segmentation process with four consecutive single-frame shifted versions of the video. We
merge the segmentations at corresponding frames using the SIMPLE18 label fusion technique.

To determine LVendo volumes and EF, we use the area of the fused segmentation to identify all ED-ES systole
phases (see Figure 1). With only AP4 views available in EchoNet-Dynamic, we compute the left-ventricular
volume using Simpson’s monoplane method that approximates the LV as contiguous circular cylindrical disks.
We use the average derived EF from multiple systole phases as another test-time augmentation.

3. EXPERIMENTAL RESULTS

R2+1D Versus 3D U-Net: The CAMUS dataset contains 450 patients with echocardiograms in both AP2
and AP4 views (900 echocardiograms). Each video contains one half-heartbeat clip from ED to ES phase, and
we resample to 10 frames with equal temporal interval. Manual annotations of left-ventricular endocardium
(LVendo), epicardium (LVepi), and left-atrium (LA) are provided for the ED and ES frames. We perform a
10-fold cross-validation where each training patient appears in exactly one test fold. The sampling of patients
is further stratified on EF range (≤ 45%,≥ 55%, else) and reported AP2 image quality (good, medium, poor)
among folds, as suggested.8

As shown in Table 1, the R2+1D-based feature extractor achieves higher dice scores on all three substructures
in both phases. A paired Wilcoxon signed-rank test17 confirms the improvement of this feature extractor over
both the original and larger 3D U-Net-based networks (p � 0.001). These improvements flow downstream to
derived clinical indices as well, with R2+1D resulting in smaller mean absolute error (MAE) of 8.2 mL (vs 8.7
mL) in EDV estimation, 5.6 mL (vs 6.2 mL) in ESV, and 4.1% (vs 4.5%) in EF. The R2+1D-based CLAS takes
∼45 minutes for training of one test fold on Nvidia Titan RTX versus ∼70 minutes using the larger 3D U-Net,
suggesting its faster optimization as another advantage.

Full Video Segmentation: EchoNet-Dynamic contains 10030 patient echocardiograms with one or more
heartbeats in AP4 view. For each video, LVendo is manually annotated by clinicians in one ED and one ES

Feature Dice - ED Dice - ES

Extractors LVendo ± σ LVepi ± σ LA± σ LVendo ± σ LVepi ± σ LA± σ
3D U-Net11 0.938± 0.033 0.955± 0.022 0.874± 0.110 0.919± 0.045 0.949± 0.023 0.907± 0.079

Larger 3D U-Net 0.939± 0.035 0.955± 0.024 0.874± 0.101 0.918± 0.047 0.949± 0.025 0.907± 0.070

R2+1D-Based 0.944± 0.026 0.958± 0.018 0.884± 0.091 0.922± 0.045 0.952± 0.021 0.913± 0.066

Table 1. Mean dice overlaps (± standard deviation) on the multi-structural segmentation in ED and ES frames. The
paired Wilcoxon signed-rank test17 indicates that CLAS with R2+1D ResNet improves performance over CLAS with 3D
UNet and Deeper 3D UNet on 450 training patients of CAMUS using 10-fold cross validation (p� 0.001).
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Figure 1. Identification of putative systolic phase clips of an EchoNet-Dynamic video using the fused LVendo segmentation.
The range of frame-level segmentation sizes on the original and 4 temporally shifted videos is shaded in red. The purple
and black dots mark clinically reported ED and ES frames. The yellow and red dots mark the putative ED and ES frames
from each cycle, which are the peaks and troughs of the fused segmented left ventricular area (blue dots). The identified
systolic phase clips are shaded in blue.

frame. We use the Ouyang et al.’s split of train, validate, and test sets. However, we exclude from training
and validation videos in which the ES frame precedes the ED frame or the denoted ED-ES clip is longer than
30 frames. As a result, CLAS-FV is trained on 7332 echocardograms and validated against 1258 that have the
denoted systolic phase clip. We test the model with the best validation loss on 1276 test patients to assess its
performance in LVendo segmentation and EF estimation.

The test videos are segmented according to the shifting, splitting, and label fusion procedure outlined in
Sec. 2.3. Once every frame is segmented, we can determine dice overlaps at the clinically denoted ED and ES
frames. To determine EF given the full video segmentation, we use the peaks and troughs of the LVendo size to
determine systole phase clips, computing an EF for each and averaging the results over a video.

On 1276 test echocardiograms, CLAS-FV leads to LVendo segmentation with mean dice overlaps of 0.935/0.907
in ED/ES frames. This compares favorably to prior CLAS-based assessments7 while providing temporally coher-
ent segmentation over all frames as opposed to only over systolic phase clips. For inference of EF, the automated
workflow fails to identify systolic phase clips in 7 of 1276 test videos. Over the remaining 1269 patients, the
MAE in derived EF versus clinically reported is 5.25%, compared to 5.83% for CLAS.7 CLAS-FV also provides
small bias and narrow limits of agreement, with bias ±1.96σ of −2.1% ± 12.9, within inter-rater variability in
non-contrast echocardiography.2

4. DISCUSSION

In this work we introduce CLAS-FV, a fully automated framework for the dense and temporally coherent segmen-
tation of multi-beat echocardiograms. Building upon the prior CLAS model limited to systole phase analysis,6

the CLAS-FV’s convolutional network employs efficient spatiotemporal feature learning and losses appropriate
for motion tracking to promote the co-learning of appearance and shape throughout the cardiac cycle. CLAS-FV
further leverages sliding windows for both training and test time augmentation to accommodate the multiple
cardiac cycles common to clinical echocardiography. We achieve state-of-art results on the extensive EchoNet-
Dynamic dataset, for which previous analyses were limited to either non-coherent frame-level segmentation5 or
exclusively to the systole phase clips within the larger video.7

Moving forward, CLAS-FV offers the potential for detailed phenotypic analysis in large historical clinical
datasets. Additinoally we look to study in particular the motion tracking outputs of CLAS-FV. Within the
context of our test time augmentation and label fusion, these results are discarded. Recent work in motion
tracking fusion may allow for additional small-scale heart motion analysis in clinical echo.
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5. SUPPLEMENTAL FIGURES

Figure 2. The left plot shows the size of segmented LVendo (blue dots) in a 32-frame video clip of a training echocardiogram.
The size of manual LVendo labels at clinically identified ED and ES frames are marked in the purple and black triangles
respectively. The 32-frame clip can start at an arbitrary time point as long as it covers the clinically identified ED-ES
half-heartbeat. For the same echocardiogram, the right plot shows all possible 32-frame clips that can be chosen from the
video. As data augmentation during training, one of the possible clips is randomly chosen during each epoch.

Figure 3. Segmented LVendo at the boundary frames of two consecutive clips before and after label fusion18 on the multi-
segmentation of original and temporally shifted videos. The middle two scatter plots show the LVendo area (pixels) around
the boundary frames (frame 95 and 96) before and after fusion. The label fusion on segmentation of multiple temporally
shifted clips connect the analysis that is previously independent between consecutive non-overlapping clips. As shown in
plots, fused segmentation thus has a smoother change in LV area (pixels), consistent with known cardiac motion.



Figure 4. Bland-Altman plot of derived ejection fraction (EF) on EchoNet-Dynamic.5 The blue solid line is the mean bias
in EF estimation. The blue vertical brackets show bias ±1.96σ. The horizontal black dotted lines denote the inter-rater
variability in non-contrast echocardiography.2
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