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ABSTRACT

Existing deep-learning methods achieve state-of-art segmentation of multiple heart substructures from 2D echocar-
diography videos, an important step in the diagnosis and management of cardiovascular disease. However, these
methods generally perform frame-level segmentation, ignoring the temporal coherence in heart motion between
frames, which is a useful signal in clinical protocols. In this work, we implement temporally consistent video
segmentation, which has recently been shown to improve performance on the multi-structure annotated CAMUS
dataset. We show that data augmentation further improves results, which are consistent with prior state-of-art
works. Our 10-fold cross-validation shows that video segmentation improves the automatic comparison to clinical
indices including smaller median absolute errors for left ventricular end-diastolic volume (6.4 ml), end-systolic
volume (4.2 ml), and ejection fraction (EF) (3.5%). In segmenting key cardiac structures, video segmentation
achieves mean Dice overlap of 0.93 on left ventricular endocardium, 0.95 on left ventricular epicardium, and
0.88 on left atrium. To assess clinical generalizability, we further apply the CAMUS-trained video segmentation
models, without tuning, to a larger, recently published EchoNet-Dynamic clinical dataset. On 1274 patients in
the test set, we obtain a median absolute error of 4.9% ± 5.4 in EF, confirming the reliability of this scheme.
In that the EchoNet-Dynamic videos contain limited annotation only for left ventricle endocardium, this effort
extends at little cost generalizable, multi-structure video segmentation to a large clinical dataset.
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1. INTRODUCTION

Accurate quantification of clinical indices of cardiovascular diseases (CVDs) requires precise annotations of the
key cardiac structures, including the left ventricle endocardium (LVendo), epicardium (LVepi), and left atrium
(LA). Manual annotation requires clinicians to locate the end-diastolic (ED) and end-systolic (ES) frames in an
echocardiographic video and carefully delineate the cardiac structures in the noisy images by visual inspection.
The recommended method of measuring the EF from echocardiogram relies on the manually annotated ED and
ES frames in both apical two chamber (AP2) and four chamber (AP4) views. Consequently, measurements
of EF in clinic are time-consuming and vulnerable to a high inter-observer variability among human experts,1

motivating the development of automatic techniques.2

Existing deep learning methods achieve accurate segmentation through independently analyzing a video’s
constituent frames and determining the ED and ES phases.2–4 However, clinicians often inspect the whole echo
videos to identify the possible ED/ES frames, and use temporal coherence between the video frames to assist the
manual annotations. Recent works in magnetic resonance5,6 and echocardiography4,7, 8 use whole or cropped
videos as the inference source and more closely simulate the clinical annotation process. Qin et al.6 and Li
et al.7 use recurrent units to model the temporal relationship between segmented frames. Ouyang et al.4 use
frame-level segmentation to determine ED-ES video clips, then regress on EF using spatio-temporal (spatial 2D
+ temporal 1D) convolutions. In their work, they also publish the large EchoNet-Dynamic dataset of multi-beat
videos with limited LVendo annotations in AP4 view.
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Figure 1. CLAS8 joint motion tracking and video segmentation. The 3D U-Net serves as a shared features extractor. We
normalize the motion tracking output with HardTanh and segmentation output with Softmax.

Recent work from Wei et al.8 uses a 3D U-Net9 as the shared feature extractor for dual motion tracking and
video segmentation tasks, called CLAS. They report excellent results on the public CAMUS dataset,10 which
contains annotations for three substructures (LVendo, LVepi, LA) and single ED-ES video clips. In this work
we compare CLAS to a prior state-of-the-art frame-level segmentation method3 using the same 10-fold cross
validation study framework with data augmentation. We use Dice overlap and derived LVendo volumes and EF
to quantify the difference in performance. We further assess the generalizability of CLAS8 trained on CAMUS to
the EchoNet-Dynamic dataset, achieving results consistent with those of Ouyang et al.4 but with multi-structure
segmentation of ED-ES video clips within each video.

2. ARCHITECTURE AND METHODS

In our implementation of the CLAS8 video segmentation network(Fig. 1), we used the 3D U-Net proposed by
Çiçek et al.9 as the shared feature extractor for the motion tracking and video segmentation tasks. The 3D U-Net
takes in the ordered sequence of echocardiographic frames from ED to ES phases (ED-ES video clip, or clip)
and outputs a 64 channel features map with the same height, width, and temporal depth as the input clip. This
feature map is then sent to a segmentation head with a single 1×1×1 convolutional layer and softmax to acquire
the 4-channel frame-level segmentation of the clip, supervised with a combined cross-entropy and multi-class Dice
loss. The same feature map is also processed by a motion tracking head with a single 3×3×3 convolutional layer
(padding=1) to obtain the bi-directional motion fields (forward and backward motions) between the frames in
the input clip. The motion field outputs are supervised by a combination of local cross correlation loss11 (number
of local windows n=16) and smoothness loss.12 The weights are initially trained using the above segmentation
and motion losses in a warm start.

In the CAMUS dataset, the clips are sparsely annotated such that only the ED and ES frames have the
corresponding ground true labels. The bi-directional motion fields allow for the spatial transformation of the one-
hot encoded ground truth ED or ES labels from the ends of each clip, generating pseudo labels for intermediate
frames. The motion tracking and segmentation heads are then tied together through additional multi-class
Dice losses: first, between corresponding intermediate frames from both the tracking and segmentation heads;
and second, between the motion-transformed ED (forward) and ES (backward) labels and the ground truth ES
and ED labels respectively. Tying together these additional pseudo label transformations reinforces coherency
between the segmentation and motion tracking outputs.

2.1 Data Augmentation on Echocardiogram Videos

Stough et al.3 showed the effectiveness of the data augmentation in enhancing the performance of frame-level
segmentation in the CAMUS set. We perform a similar set of data augmentations, including the random intensity
windowing, slight rotation about the transducer point, and additive Gaussian noise, applied on the fly to the
clips during the training. The subintervals of the intensity windowing and the angles of rotation are variant



across the patients but identical within a clip. The scale of the added Gussian-distributed noise is random on
each frame of a clip.

2.2 Training Setup

Ten frames from ED to ES were resampled with equal time interval from each echocardiogram video. All frames
were resized to 256× 256 and the intensities normalized to [-1, 1]. We trained the separate models on the AP2
and AP4 views for 40 epochs with Adam optimizer, saving the model weights with the best loss on the validation
set. The initial learning rates of the Adam optimizer on the 3D U-Net feature extraction and segmentation head
were 1 × 10−4, and 0.5 × 10−4 on the motion tracking head. The learning rate of all optmizers were reduced
to 1× 10−5 after 25 epochs. The weights of all 3D convolutional layers were initialized according the Gaussian
N (0, 10−5). For data augmentation, the subinterval of the random intensity windowing was up to half of the
image’s intensity range; the random rotation about the transducor was sampled from N (0, σ2

rot = 52); and the
scale of additive Gaussian noises was from sampled from U(0, 0.15). We used the same set of hyperparameters
across the training folds.

2.3 Evaluation

We used Dice overlaps to validate the methods’ performance on the CAMUS dataset. Dice overlap measures
the agreement between the automated and manual annotations by the ratio of the intersection to average area,

D(yauto, ytrue) = 2(yauto∩ytrue)
|yauto|+|ytrue| .

Since both the AP2 and AP4 views of echocardiograms are available in the CAMUS dataset, we used the
Simpson’s biplane method of disk, the most accurate protocol,13 to derive the ED and ES volumes (EDV and
ESV) from the automated segmentations. This protocol approximates the left ventricle as contiguous elliptical
cylinders of which the semi-major and semi-minor axes are estimated by the widths of left-ventricle in AP2 and
AP4 views respectively. The derived EF of a patient is equal to EDV−ESV

EDV ×100%. With only AP4 views available
in the EchoNet-Dynamic dataset however, Simpson’s monoplane assumes contiguous circular cylinder disks in
the geometric approximation.

3. EXPERIMENTAL RESULTS

The CAMUS dataset consists of 450 echocardiogram patients in the training set with videos in both AP2 and
AP4 views and manual annotated frames in ED and ES phases (900 echocadiogram videos). Each video contains
one half heartbeat clip from ED to ES phase with length of at least 10 frames. We performed a ten-fold cross-
validation experiment with folds split by patient, so that each patient is represented in exactly one fold. Sampling
is further stratified on EF range (≤ 45%,≥ 55%, else) and reported AP2 image quality (good, medium, poor),
as previously suggested.3,10

Table 1 shows Dice performance by phase and heart substructure for three methods. Our implementation
of CLAS is consistent with Wei et al.,8 and data augmentation (A-CLAS) provides slight but significant further
improvement. A-CLAS does show slightly lower performance than the U-Net based frame-level segmentation
of Stough et al.3 at the ED and ES frames, for which annotations are available. However, A-CLAS forces a
temporally coherent segmentation tying together the ED and ES phases, which may negatively impact Dice for

Methods Dice - ED Dice - ES

LVendo ± σ LVepi ± σ LA± σ LVendo ± σ LVepi ± σ LA± σ
CLAS8 0.935± 0.034 0.948± 0.027 0.857± 0.118 0.911± 0.052 0.941± 0.031 0.892± 0.086

A-CLAS (w/ aug) 0.937± 0.034 0.950± 0.028 0.863± 0.112 0.916± 0.050 0.943± 0.031 0.898± 0.082

Frame3 (w/ aug) 0.941± 0.030 0.956± 0.022 0.872± 0.120 0.916± 0.057 0.948± 0.040 0.909± 0.084

Table 1. Mean Dice overlaps (± standard deviation) on the 450 training patients in CAMUS using 10-fold cross-validation.
CLAS8 is shown both without and with data augmentation. The paired Wilcoxon signed-rank test14 on corresponding
frames indicates that data augmentation improves CLAS performance on the three cardiac structures (p� 0.001).
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Figure 2. Bland-Altman plots of derived clinical indices on the CAMUS dataset, and EF on EchoNet-Dynamic. The
[orange, red] dashed lines show bias ± [50%,75%]. The blue dotted line shows bias ±1.96σ. The black dotted line is the
inter-observer variability in non contrast echocardiography (−7.6±25.2 EDV; −3.5±19.6 ESV; −1.2±15.1 EF) .1

the benefit of improved outlier performance. We observed A-CLAS to provide a more coherent multi-structure,
multi-frame output, consistent with Wei et al.8

The advantage of A-CLAS over the frame-level segmentation is seen in the LV volume measurements and EF
derived using the corresponding AP2 and AP4 views for each patient (Fig. 2). We report smaller mean absolute
errors of 8.7ml (vs 9.9 ml3) in EDV, 6.3 ml (vs 6.6 ml) in ESV, and 4.6% vs (vs 5.3%) in EF. We also found
smaller bias and narrower limits of agreement between the automated and reported clinical indices, with bias
±1.96σ of 2.9mL± 22.8 in EDV (vs 6.0mL± 24.53), 1.7mL± 18.4 in ESV (vs 2.3mL± 18.2), and 0.21%± 12.0
in EF (vs 1.7%± 14.3). These results are all within published inter-observer variability,1 and represent the best
results reported on this dataset.

The ground truth annotations of 50 test patients in CAMUS are intentionally left out for model evaluation
through an online platform.15 We generate the automated segmentation on the video clip of each test patient by
aggregating the softmax outputs from all 10-fold models and then apply argmax across the channels. The results
from the evaluation platform show A-CLAS achieved higher cross correlations on the EDV (0.983 vs 0.972), ESV
(0.969 vs 0.963), and EF (0.883 vs 0.845) and consistent performance on segmentation compared with the best
reported results on the platform.

We additionally assess the generalizability of CAMUS-trained A-CLAS on the large EchoNet-Dynamic clinical
dataset from Stanford,4 containing 1276 echocardiogram videos in AP4 view. In contrast to the single ED-ES
video clips in the CAMUS dataset, the videos in EchoNet-dynamic dataset may contain multiple heartbeats.
We extend Ouyang et al.4 in using frame-level segmentation to determine all ED-ES clip locations in any video,
and using the resulting multiple clips as test time augmentation. We generate the segmentations of all ED-ES
video clips using the CAMUS-trained 10-fold models without tuning. The final estimation of a patient’s EF is
the average of derived EF from all clips. As shown in Figure 2, A-CLAS provides accurate EF estimation of
1.60% ± 15.95 over 1274 patients (two videos fail to return clips due to poor frame-level segmentation). These
results are comparable to reported inter-observer variability.1

4. DISCUSSION

Our work here demonstrates the generalizability of temporally coherent multi-beat, multi-structure segmentation
for large-scale echocardiography analysis. Our fair comparison between A-CLAS8 joint video and motion tracking
and frame-level segmentation methods3 reveals A-CLAS’s advantage in delivering the temporally consistent
annotation for more accurate derivation of clinical indices. We report minimal bias and narrower limits of
agreement on EDV, ESV, and EF with A-CLAS in both 10-fold cross-validation and in the held-out testing
set of CAMUS. Assessing its generalizability to the EchoNet-Dynamic dataset validates A-CLAS’s consistent
performance on clinical data after training on the curated CAMUS set. Fully realizing the extension from 450
patients in CAMUS to the 10,030 patients (train, test, and validate sets) in EchoNet-Dynamic is a challenging
task in transfer learning. We believe an effective domain adaptation16 from a curated training dataset like
CAMUS to often unlabeled clinical datasets will be the most crucial factor in this learning transformation.
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5. SUPPLEMENTAL FIGURES

Figure 3. Clip finding of EchoNet-Dynamic videos using frame-level segmentation area. The vertical purple and black
lines mark the clinically reported ED and ES frame of the video. The yellow and red dots mark the determined ED and
ES frames, which are the peaks and troughs of the segmented left ventricular area (blue dots). The identified ED-ES
video clips are shaded in blue.



Figure 4. Segmentation output of an ED-ES (frame 0 to frame 9) video clip in the EchoNet-Dynamic dataset. The contours
of the left ventricular epicardium, endocardium, and left atrium are delineated in purple, yellow, and blue respectively.

Figure 5. Example A-CLAS segmentation output in the CAMUS dataset. The right-most plots show the coherent change
in area of the segmented structures, consistent with known cardiac motions.8
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