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10-Fold Cross-Validation
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e Diagnosis of cardiovascular disease requires accurate quantification
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e Video segmentation considers temporal coherence in

. y addition to spatial features when segmenting
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e Improved estimation on EDV, ESV, and EF
e Apply CAMUS-trained A-CLAS without tuning on the clinical e \Well generalized to a larger unseen clinical dataset

EchoNet-Dynamic dataset [4]
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e CNN, CLAS [1], infers on sampled 10-frame ED to ES video clips
e Segmentation and motion tracking tasks use a shared feature
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