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ABSTRACT

Segmentation of heart substructures in cardiac magnetic resonance (CMR) is an important step in the quan-
titative assessment of the impact of cardiovascular disease. Manual delineation of these structures, over many
patients and multiple time phases, is time consuming and prone to human error and fatigue. In this work we use
a deep fully convolutional neural network architecture to automatically segment heart substructures in CMR,
achieving state of the art results on a recent benchmark dataset. We further apply our process to a much larger
study of CMR subjects, automatically segmenting both left and right ventricular endocardia (LV, RV) with full
thirty-phase time resolution, and LV epicardium (Epi) at end-diastole. We validate our automatically obtained
results against manual delineations using Dice overlap and Hausdorff distance, as well as Bland-Altman limits
of agreement on the derived blood volumes, ejection fraction, and LV mass. We obtain median Dice overlaps
of 0.97, 0.94, and 0.97 on the three structures respectively, and further find small biases and narrow limits of
agreement between the two assessments (manual, automatic) of volumes and mass. Our results show promise
for the fully automated analysis of the CMR data stream in the near future.
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1. INTRODUCTION

Cardiovascular diseases are a major cause of morbidity and mortality globally.1 Short-axis cardiac magnetic
resonance (CMR) imaging, though common in clinical practice, is underutilized for its quantitative power at
large scale, such as in population studies in the pursuit of precision medicine. Quantitative analysis of CMR by
humans may require time consuming detailed delineation of the relevant heart substructures over time and over
multiple slices within the 3D volume (see Fig.1). Exploiting this important data stream thus requires automatic
processing, an open problem for many around the world.2,3

Neural network learning has recently shown considerable promise on this front. Zhen et al.4 use unsupervised
representation learning and regression forests for the direct estimation of ventricular volume. Avendi et al.5

combine convolutional neural network learning and a deformable shape model to segment the left ventricle (LV)
for volume and ejection fraction estimation. Emad et al.6 segment the LV using a multi-scale convolutional
neural network. Recently, Romageura et al.7 proposed a deep fully convolutional neural network (CNN) for LV
segmentation based on the work of Tran.8

Here we extend the work of Romageura et al., using the TensorFlow9 deep learning library to implement the
neural network architecture, and automatically segment the LV endocardium. We achieve comparable state of
the art results on the Sunnybrook CMR dataset.10 We then apply the same basic neural network architecture
to a much larger study of 51 healthy volunteers recruited from Geisinger Health System. In addition to LV
endocardium, we segment the LV epicardium (Epi) and right ventricle (RV) endocardium. We validate against
manual delineations on Dice overlap and Hausdorff distance, as well as derived blood volumes, ejection fraction,
and LV mass.
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Figure 1. Left: Four Chamber (off axis) view with left and right ventricles (LV, RV) highlighted. Middle and right:
example short axis CMR, and zoomed area showing the left ventricular endocardium (LV, cyan) and epicardium (Epi,
yellow), and right ventricular endocardium (RV, orange) boundary contours.
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Figure 2. Deep fully convolutional neural network architecture.7 Inference takes place left-to-right, as learned image
filtering operations provide larger-scale semantic information about the input image. Learning takes place right-to-left
through backpropagation, where the learned parameters are modified according to gradient descent in order to minimize
the inferred error in the training cases.11

2. MATERIALS AND METHODS

Using the TensorFlow9 deep learning library, we implemented the CNN architecture recently proposed by Ro-
mageura et al.,7 which learns to segment 2D short-axis slices of the typical CMR study (see Fig. 1). As with
other recent CNN work,5,8 this network consists of successive stages each of which incorporates multiple con-
volutional layers for feature learning followed by a max pooling layer for translational invariance and to reduce
network dimensionality (Fig. 2). At the end of three of these stages, our network outputs a two-channel tensor
representing foreground and background measures at one-eighth of the original image resolution. This tensor is
then upsampled through a learned deconvolutional layer to the original image resolution, finally followed by a
softmax layer for differentiability and numerical considerations in the backpropagation learning process.11

We validated the established network architecture on the Sunnybrook CMR dataset.10 Given a five-fold
cross validation experimental setup, we obtained an average Dice overlap of 0.920 (± 0.122) on LV, in line with
previous state of the art results on this dataset.5–7,12

3. EXPERIMENTAL RESULTS

Our data consist of 51 healthy subjects recruited from the Geisinger Health System following an Institutional
Review Board approved protocol. All subjects provided informed consent. CMR evaluation was performed on
a 3 Tesla Siemens scanner, and included 8–10 short-axis slices spanning the ventricles with 1.17mm isotropic
in-plane resolution and 8mm slice thickness. LV and RV endocardial contours were manually delineated on each
slice. Additionally, contour propagation through time (30 phases per slice) was performed using an optical flow
algorithm, with manual corrections made as needed. Finally, the LV epicardium (Epi) was manually delineated



LV Epi RV
0.75
0.80
0.85
0.90
0.95
1.00

Di
ce

 In
de

x

0.971 0.972
0.9440.95

0.98
0.96
0.98

0.91

0.960.952 0.949
0.903

outliers: 8.6% 10.8% 9.8%

Median
Average

LV Epi RV
0
1
2
3
4
5
6
7
8
9

Ha
us
do
rff
 D
ist
an
ce
 (m
m
)

1.66
2.34

3.31

1.17
2.34

1.66

3.31
2.34

4.69

2.02
3.24

4.43

outliers: 3.6% 8.2% 9.3%

Median
Average

Figure 3. Box-Whisker plots showing the distribution of Dice overlap (left) and Hausdorff distance (right) for each of
the three heart substructures segmented. Numbers to the left of a box are (top to bottom) the 75th and 25th percentiles.

Figure 4. Good, median, and bad example segmentations showing manual (red) and automatically obtained (green)
contours. Left to right: LV, Epi, RV. Top to bottom: rows are sampled from the 90th, 50th, and 10th percentiles in Dice
overlap, approximately 0.98 (0.97 RV), 0.97 (0.94) and 0.91 (0.81) respectively.

at end-diastole. In all, our data thus include approximately 15000 segmented short-axis images for LV, 14000
for RV, and 528 for Epi.

We perform a five-fold cross validation study, training on 4/5th of subjects and validating on the left out 1/5th.
The neural network architecture (see Sec. 2) is trained separately for each region of interest. We validate our
automatically obtained segmentations against manual delineations using Dice overlap and Hausdorff distance,
summarized over all validation sets in Figure 3. Our average Dice overlaps of 0.95 (LV, Epi) and 0.90 (RV) and
limited outliers compare favorably against recent work.12–14 Figure 4 shows example segmentations over the
range of Dice scores for each region of interest.

We further used our automatic segmentations to derive clinically relevant quantitative measures for each
patient, including the LV and RV blood volumes at end-diastolic and end-systolic phases (EDV, ESV, respec-
tively), LV ejection fraction (LVEF), and LV mass. We compared these quantitative measures against those
derived from the manual delineations using the Bland-Altman method, which plots the discrepancy of the mea-
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Figure 5. Bland-Altman plots comparing the automatically-obtained heart structure to the manual annotations. Left
column: left ventricle end-diastole (top) and end-systole (bottom) volume. Middle column: right ventricle corresponding
volumes. Right column: Ejection fraction (top) and left ventricle mass (bottom). Results indicate that the presented
fully automatic scheme obtains results that are interchangeable with those of the manual rater.16,17

sures against the average to quantify the mean bias and 95% limits of agreement (Fig. 5)15 Given prior studies
of inter-rater variability in CMR LV segmentation,16 our automatically obtained segmentations are comparable
with the manual in derived LVEF and LV[EDV,ESV].

4. DISCUSSION

Our work is the first to use convolutional neural nets to segment both LV and RV heart substructures over
all time phases of short-axis CMR. With the additional epicardium substructure, our state of the art results
indicate the automated analysis of CMR in the near future. However, though simple quantifiers such as ejection
fraction and volumes may be tractable to our processing now, more detailed quantitative assessments will require
addressing the outlying failure cases of our automatic method. These cases are principally slices in the apical
region and in images with artifacts. Shape priors5 and the re-incorporation of spatial and temporal coherence
should help alleviate these issues.

In the short term we will add pathology cases to our initial study. Longer term, we will consider our
automated analyses in conjunction with other electronic health record data and genetic data for large-scale
population studies such as in Bai et al.,18 though using the less than ideal clinically-acquired historical CMR
data.

The full length submission of this work will include more general prior work in Sec. 1, mathematical back-
ground in Sec. 2, computational aspects of validation in Sec. 3, and unabbreviated references.
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