

BIICKNE UNIVERSITY

Motivation

- Cardiovascular diseases are one of the leading causes of death worldwide.
- Doctors can quantitatively assess the effects of heart disease using cardiac MRI results.
- It is a time-consuming process to manually segment the Cardiac MR images. The process can be automated using machine learning with a Convolutional Neural Network.

Data Pipeline

- **Goal:** Create a data pipeline to facilitate the learning process.
- Extract the Cardiac MR images and the manual contours from the data files provided by the Geisinger Health System.
- Create extensible code that can be easily modified for new data.
- Minimize I/O operations to increase the speed of the learning process.

Cardiac MRI

Left Ventricular Epicardium (Epi) Manual Contour

Left Ventricular Endocardium (LV) Manual Contour

Right Ventricular Endocardium (RV) Manual Contour

Joseph DiPalma Advisors: Dr. Joshua Stough¹, Dr. Christopher Haggerty² ¹Department of Computer Science, Bucknell University, Lewisburg, Pa. ²Cardiac Imaging Technology Lab, Geisinger Health System

Evaluation

- **Goal:** Evaluate the results using the Dice coefficient and a discretized version of the Hausdorff Distance.
- The Dice coefficient is a measure of similarity between two sets. Given two sets A and B, the associated Dice coefficient is:

Dice Coefficient = $\frac{2|A \cap B|}{|A||}$ |A|+|B|

• The Hausdorff Distance measures how far two sets are from each other.

Source: Rocchini - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=2918812

Image Normalization

- **Goal:** Normalize the images to further improve our results.
- Mean Variance Normalization:
- Normalize the image values to have a mean of zero and unit variance.

Source: http://cs231n.github.io/neural-networks-2/

Image Histogram Normalization:

Source: Zefram - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=668605

Data and Image Processing in Cardiac MRI Analysis

Unnormalized:

Normalized with **Histogram Normalization:**

- Scaling:
- Multiply all of the image values by a scalar.
- Scaling works best. The network is being updated to learn the scalar that gives the best results.

segmentation exists. We will fix the problematic outliers using scaling. • Next Steps:

 Add different pathologies. Spatial and temporal coherence.

Acknowledgements

Bucknell Geisinger Research Initiative Bucknell Program for Undergraduate Research • Library and IT staff, Jeremy Dreese and Mike Harvey • J.V. Stough, J. DiPalma, Z. Ma, B.K. Fornwalt, C.M. Haggerty. "Ventricular segmentation and quantitative assessment in cardiac MR using convolutional neural networks." SPIE-Medical Imaging 2018 (forthcoming)