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ABSTRACT

Bayesian Optimization (BO) is a well-studied hyperparam-
eter tuning technique that is more efficient than grid search
for high-cost, high-parameter machine learning problems.
Echocardiography is a ubiquitous modality for evaluating
heart structure and function in cardiology. In this work, we
use BO to optimize the architectural and training-related
hyperparameters of a previously published deep fully convo-
lutional neural network model for multi-structure segmenta-
tion in echocardiography. In a fair comparison, the resulting
model outperforms this recent state of the art on the annotated
CAMUS dataset in both apical two- and four-chamber echo
views. We report mean Dice overlaps of 0.95, 0.96, and 0.93
on left ventricular endocardium, epicardium, and left atrium
respectively. We also observe significant improvement in
derived clinical indices, including smaller median absolute
errors for left ventricular end-diastolic volume (4.9ml vs.
6.7), end-systolic volume (3.1ml vs. 5.2), and ejection frac-
tion (2.6% vs. 3.7); and much tighter limits of agreement,
which were already within inter-rater variability for non-
contrast echo. While these results demonstrate the benefits
of BO for echocardiography segmentation over even a re-
cent state-of-the-art framework, they must still be validated
against large-scale independent clinical data.

Index Terms— Echocardiography, Segmentation,
Bayesian Optimization

1. INTRODUCTION

Echocardiography is the most frequently used non-invasive
imaging modality for the quantification of heart structure and
function [1]. However, such quantification requires precise
annotations of the key cardiac structures, including the left
ventricle endocardium (LVendo), epicardium (LVepi), and left
atrium (LA). Manual annotation is high-cost and prone to
inter-rater variability, which has motivated the development
of automated segmentation methods, most recently using con-
volutional neural networks [2].
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The U-net architecture [3] is well-known for its capacity
to learn abstract features and complete a wide range of medi-
cal image segmentation tasks. Within the domain of echocar-
diography segmentation, LeClerc et al. [4] have demonstrated
the relative efficacy of U-net models on their large annotated
CAMUS dataset.

Among others who have followed this work [5], Stough et
al. [6] developed a U-net variant and claimed state-of-the-art
results on CAMUS. However, the hyperparameters used in
this framework were found heuristically and through small-
scale grid search, given the high cost of training such a deep
fully convolutional neural network. In this work we leverage
Bayesian Optimization (BO) and distributed computing to ef-
ficiently search the hyperparameter space, resulting in signif-
icant improvements in multi-structure echocardiography seg-
mentation.

Bayesian optimization provides both theoretical guaran-
tees in optimizing expensive black-box functions [7], and has
been proven to work well in practice [8]. BO is especially
valuable when the observed objective is gradient-free, expen-
sive to evaluate, and have fewer than 20 parameters to be op-
timized [9]. BO utilizes Gaussian Processes to gain insights
into the objective function’s probability distribution, and uses
an acquisition function on top of this distribution to determine
the next set of hyperparameters to be tested.

2. METHODS

The model developed in [6] is an encoder-decoder style net-
work incorporating additive skip connections and group nor-
malization (Fig. 1). We optimize on a variety of architectural
and training-related hyperparameters, as shown in Table 1.

We then observe a noisy objective function f(x) that eval-
uates the performance of the model on a given candidate, or
set of hyperparameters x ∈ H: y = f(x) + ε, where y is the
observed value, and ε ∼ N (0, σ2), in which σ is given. The
known performances on initial candidates will be fed into BO
to find candidates x that maximize f(x) : argmaxx f(x).
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Fig. 1: CNN architecture for multi-structure segmentation of echocardiography [6]. Each block incorporates chained con-
volution, group normalization, and non-linear activation. During BO optimization, architectural hyperparameters include the
number of output filters (n filter), and whether to use group or batch normalization.

Hyperparameter Lower bound Upper bound
Architectural n filters #1 16 32

n filters #2 57 128
n filters #3 153 256
n filters #4 281 512
n filters #5 537 1024

group vs batchnorm 0 1
number of groups 2 24

Training-related log learning rate -9 2
log weight decay -9 -2

batch size 2 10

Table 1: Table showing hyperparameter space to be opti-
mized and their description.

2.1. Objective Functions

We score the goodness of candidate x through mean test loss
in a 5-fold cross validation setting with N total images. Let
Ej be test fold j, hjx be the model trained using x with fold j,
I be an image inEj , and L be the Cross Entropy loss from the
resulting segmentation hjx(I). Since we’re maximizing the
objective function, we invert this test loss. We call this objec-
tive Mean Validation loss (MV), which is observed through:

y = oMV (x) = 1− 1

N

5∑
j=1

∑
I∈Ej

L[hjx(I)]

2.2. Bayesian Optimization

Implemented with BoTorch [10], we utilize heteroskedastic
Gaussian Processes (GP), which wrap another GP to model
changing objective noise. Beside the objective, we also also
model a GPU constraint with a fixed noise GP. All GPs used
the default Matérn 5/2 kernel. Based on these GPs, the ac-
quisition function Noisy Expected Improvement (NEI) [11]
is applied on both objective and constraint in scoring candi-
dates.

In this setting, we assume that the observed objective
value is corrupted by white noise ε ∼ N (0, σ2), where σ2

is set to be the variance of validation loss. Suppose we use

Expected Improvement (EI) on the observed objective, we
need to know f∗, or known best true objective, which is not
apparent. This is due to our assumption that only the noisy
observed value y is known. To deal with this drawback,
Letham et al. [11] sample multiple random “imaginary” in-
stances of [f(x1), · · · , f(xn)] | Df ∼ N (µf ,Σf ), where
Df = {xi, yi, σ

2
i }ni=1 are known values and uncertainty es-

timates of the objective. Each instance [f(x1), · · · , f(xn)]
is then used to fit a predetermined k number of different
GP modelsM1, · · · ,Mk, which offer insights into different
stochastic scenarios. Additionally, a constraint is added to
keep GPU usage in check, thus ensuring the worker machines
are capable of handling the objective evaluation process. Sim-
ilar to the objective, multiple “imaginary” instances of con-
straint are sampled and fitted to multiple GPsM′1, · · · ,M′k.
Each output on a potential candidate of the objective GPs
f(x) and constraint GPs c(x) is combined as follows:

Weighted Objective of x = f(x)
(

1− 1

1 + e−c(x)

)
We then calculate EI for the weighted objective of each pair
[Mi,M′i]. After that, we average all EI values of a particular
x to get the final NEI value.

3. EXPERIMENTAL RESULTS

The CAMUS dataset consists of 450 patients, two (AP2/AP4)
views per patient, and two annotated (ED/ES) phases per
view, totalling 1800 echocardiographic frames and corre-
sponding label masks (LVendo, LVepi, LA, background). Ad-
ditional information for each patient includes age, sex, and
reported ED/ES LVendo volumes and ejection fraction (EF),
along with the observed image quality for each view.

We initially leave out∼30% (N = 136) of patients for final
evaluation. The remaining 70% (N = 314) are then partitioned
for 5-fold cross validation with training, validation, and test
splits. As in [4], all splits are stratified on both patient EF
range (≤ 45%, ≥ 55%, else) and reported image quality.



Label / Score Dmean ED Dmean±σ ES Dmean±σ
AP2 LVendo 0.950(0.921) 0.960(0.937) ±0.015(0.034) 0.941(0.905) ±0.033(0.059)

LVepi 0.966(0.950) 0.968(0.953) ±0.012(0.024) 0.964(0.947) ±0.014(0.028)
LA 0.934(0.879) 0.929(0.857) ± 0.038(0.131) 0.939(0.901) ±0.028(0.081)

AP4 LVendo 0.954(0.935) 0.962(0.946) ±0.016(0.023) 0.945(0.924) ±0.027(0.039)
LVepi 0.969(0.958) 0.971(0.961) ±0.010(0.015) 0.967(0.955) ±0.011(0.016)
LA 0.935(0.910) 0.924(0.890) ±0.042(0.071) 0.947(0.931) ±0.025(0.032)

Table 2: Dice overlaps for the MV optimal candidate shown against the published candidate [6] (in parentheses) on the
evaluation set (136 patients).

In training candidate x, the model weights are saved ac-
cording to performance on the validation splits, while the BO
objective is computed against the associated test splits. As
in [6], on-the-fly data augmentation is used, including in-
tensity windowing, slight rotation about the transducer point,
and additive Gaussian noise. Training is continued to conver-
gence using a standard scheduler that reduces learning rate on
a plateau in validation loss.
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Fig. 2: Box plots of LVendo and LA Dice performance. The
MV optimum shows significant improvement over [6] in me-
dian and outlier performance on both structures.

We run BO asyncronously in a distributed environment in
which each node runs a single GeForce RTX 2080 Ti. We
run 100 candidates for each of AP2 and AP4 views, resulting
in two best candidates. In segmenting the 30% evaluation
set with a particular optimal candidate, we accumulate the
outputs from all five folds to obtain an ensemble result.

Table 2 directly compares the MV optimal candidate to
the previously published candidate [6] through Dice. The
MV optimal candidate shows improved agreement with man-
ual annotation for all views, structures, and phases. Figure 2
provides additional context, showing greatly improved outlier
performance of the MV optimal candidate, particularly for the
relatively small and thus difficult left atrium. Figure 3 shows
representative median and poor segmentation results.

We further derive the LV volume measurements and EF
using the Simpsons modified biplane method and the corre-
sponding AP2 and AP4 views for each patient. Compared to
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Fig. 3: Segmentation performance of MV and published [6]
candidates on 50th, 10th and 5th LVendo Dice score per-
centile for AP2 view of [6]. Green contour denotes manual
segmentation.

the previously published candidate [6], the MV optimal can-
didate obtains significantly smaller biases and narrower limits
of agreement with reported clinical indices. We report median
absolute errors of 4.9ml (vs. 6.7) for ED volume, 3.1ml (vs.
5.2) for ES volume, and 2.6% (vs. 3.7%) for EF (Fig. 4).

4. CONCLUSION

In this work, we have utilized Bayesian Optimization to sig-
nificantly improve upon recent state-of-the-art multi-structure
segmentation in echocardiography. In a fair comparison, the
optimal candidate boasts tighter limits of agreement and
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Fig. 4: Bland-Altman plots comparing the optimal MV candidate against manual annotations for LVendo volumes and ejection
fraction on the evaluation set, in blue. Additional limits of agreement are shown for both the published candidate [6] on the same
data (green, dashdotted) and previously reported inter-observer variability for 2D echocardiography [12] (gray, dotted). Com-
pared to [6], we report bias±1.96σ of 4.13mL±16.15 (vs 6.25mL±28.34) for ED volume, 2.53mL±11.52 (vs 2.69mL±20.56)
for ES volume, and −0.04%±7.94 (vs 1.69%±11.57) for EF.

vastly improved outlier performance. The potential absence
of catastrophic failures makes more feasible limited auditing
in future large-scale historical analyses.

Relative to [6], the optimal hyperparameter set is charac-
terized by smaller learning and decay rates along with deeper
feature maps and thus more trainable parameters (40M vs
13M). One resulting concern is that there may be overfitting
to the relatively consistent and artifact-free CAMUS images,
though care was taken to separate training, BO scoring, and
evaluation data. We must assess the optimal model’s general-
izability on independent clinical datasets [13], which may fea-
ture larger variability in acquisition settings and image qual-
ity, and even burned-in view and patient information that is
more common in the clinic.
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