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MOTIVATION & BACKGROUND EXPERIMENTAL SETUP RESULTS

e Echocardiography is a ubiquitous modality for diagnosing e CAMUS dataset [3]. e Higher Dice score, less outliers (Fig. 1 & 2 & 3), and
cardiomyopathy. e Apical two and four chamber views (AP2/AP4) each patient. narrower clinical index limit of agreement (LOA) (Fig. 4). <
e Time-consuming if segmented manually. e End-diastolic and end-systolic (ED/ES) phases each view. e Deeper feature maps and thus more trainable parameters =
e Previously published state-of-the-art convolutional neural e K-fold splits are stratified on both patient EF range (<45%, (40M vs 13M). S
network (CNN) model [1] used heuristically-chosen =255%, else) and reported image quality. e Generalizes to independent Stanford-EchoNet [4] data, =
hyperparameters. e¢ Run BO asynchronously, each node runs single GeForce achieves statistically significant improvement, with
e Goal: Use Bayesian Optimization on hyperparameters for RTX 2080 Ti. median Dice overlaps of 0.921/0.895 on ED/ES.
CNN-based multi-structure echo segmentation. e Optimize each view independently, 100 candidates for each e Consistent results on 50 left-out CAMUS patients [3], obtain
view. mean ED/ES overlaps of 0.948/0.928 on LVendo, —
METHOD - BAYESIAN OPTIMIZATION (BO) e EchoNet [4] test set for generalizability test. 0.962/0.955 on LVepi, and 0.899/0.932 on LA. 5
e Noisy Constrained Expected Improvement [2]. Testiold o fods =
e Objective: Mean validation (MV) performance on test set. o )
e Constraint: GPU capacity. '® :
e Heteroskedastic Gaussian Processes (Matérn 5/2 kernel) to 3§> FOLD 2 j > [1] 50% [1] 102 [E]:52
mOdel ObJeCt|Ve ’ | C s -: > z l 2' Fig 2: Segmentation peﬁ%:r;aer;csoc:]:moﬁlséé eorfol\t/le\/s, ;)nra?]zt;rrézeegdrh((;gg;i/;)].and published [1] (below).
e Usual Gaussian Process (Matérn 5/2 kernel) to model constraint. Cofo) §
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| A5 ,,b, Inal evaluation Ine challenge p Generallze_zblllty Fig 3: Segmentation performance on AP2 of MV, or optimized. (above) and published [1] (below). Fig 4: Bland-Altman plot. Blue dash: LOA of optlmlggd m_odel. Greten.qash-dotted: LOA of published [1] model.
S it 2 Evaluation Green contour denotes manual segmentation. Gray dotted: inter-rater variabilty.
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