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Introduction Model Architecture and Hyperparameters Table 1: Validation accuracy Table 2: Validation accuracy
« Diabetic retinopathy (DR) Is the damage to retinal blood | S — — S for early detector for severity classifier
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« Of an estimated 285 million people with diabetes mellitus 1 E;‘ggcy 1 A“E‘;f;‘w
worldwide, approximately one third have signs of DR. [1] Ave;?ge Drovout Layer AvaPooi2D 5 087 5 078
 While robust algorithms exist to diagnose late stage DR, Pooling (p=04) 3 0.83 3 0.83
early detection is still unsolved problem because it is difficult ‘51 g-gg 4 g-ﬁg
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to detect micro-aneurysms (Figure 1). [1] . Fully oy | [ ez || o e— 0.794
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Figure 2: Convolutional neural network architecture. Last fully DiScussion
connected layer had variable out channels depending on experiment
e Batch size = 8  The binary classifier's sensitivity was calculated as 0.932
+ Epochs: 25 (binary classifier), 40 (early detector and severity and the specificity as 0.989, which are comparable to
classifier) literature models [2].
Figure 1. (A) Normal fundus photograph (B) Severe DR * Learning rate: 0.0001
with white arrows pointing towards flame shaped +  Optimizer: Adam optimizer * The specificity being higher than sensitivity means that the
hemorrhages (C) Early stage DR with white boxes showing + Kernel size: 3x3 for all convolutional layers model Is better at predicting healthier cases than DR cases.
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Tra|n|ng and validation prOtOCOl « Confusion matrices (Figure 4) show that model good at

Project goal: Develop machine learning algorithms
for early DR detection

predicting early DR, but also confuses it with late DR.

* Five-fold stratified cross validation study performed for all
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Previous Work experiments. Four splits for training and one split for validation. A B B
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. Prew_o_us I_|teratur_e mo_dels _have been able to perform binary * For binary classification, the true positive and false positive rates T | 2 - ' . ' : - L I 34| 2 | 5 |0 0 [
CIaOSS'f'Ca“O” of diabetic retinopathy at accuracies upwards of were calculated for each split. For the early detection and severity 3 1 | 7 4 24| 2|0
90%. [2] classifying experiments, confusion matrices were created for each 5 | 1 12 | 243 | 17 5 | 2 I 3 10 183 3 1
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» Literature methods have not shown impressive results In the P 2 0 53 | 44 - 1 % 1 9 |2 | [
graded classification of DR, especially in terms with early Results - - AERERERERES
diagnosis. [3] Figure 4: Confusion matrices for (A) early detector (B) severity
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 The first neural network that tried to differentiate between The binary colassmer model gave very stro_ng validation accuracies | |
normal patches of retina from patches with micro-aneurysms (average 97%) and strong ROC curves (Figure 3). * This could happen because deeper In the model, the
achieved an accuracy of 74%. [4, 5] aperture Is larger than the micro-aneurysms.
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 The APTOS 2019 blindness dataset was used to train all the 5094 jlﬁ Y :::a: * Create residual connections so that learning earlier in the
models in this study. [6] E“‘E L __ ' -y —Split 3 model can be connected with deeper layers.
o . o g 0 | ~Spit 4 =apmd o
* A clinician has rated each image for the severity of diabetic . } Split 3 | Split 5  Move to a 3-1-1 cross validation study.
retinopathy on a scale of 0 (no DR) to 4 (proliferative DR). 0.0 T3 . o
0.86 : : O oa e de * To avoid overfitting, stop training the model when training and
» The APTOS dataset was used to run three experiments: ’ “Epoch * False Positive Rate validation loss diverge.
1. Binary classification: labels changed to “0" I the Figure 3: (A) Validation curves and (B) ROC Curves for the five References
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