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ABSTRACT

Magnetic Resonance Imaging (MRI) encompasses a set of powerful imaging techniques for understanding brain
structure and diagnosing pathology. Various MRI sequences including T1- and T2-weighted provide rich com-
plementary information. However, significant equipment costs and acquisition times have inhibited uptake of
this critical technology, adversely impacting health equity globally. To ameliorate these costs associated with
brain MRIs, we present pTransGAN, a generative adversarial network (GAN) capable of translating both healthy
and unhealthy T1 scans into T2 scans, thereby obviating T2 acquisition. Extending prior GAN-based image
translation, we show that the addition of non-adversarial perceptual losses, like style and content loss, improves
the translations provided, especially making the generated images sharper, and making the model more robust.
Additionally in previous studies, separate models have been created for healthy and unhealthy brain MRI. Thus
here, we also present a novel simultaneous training protocol that allows pTransGAN to concurrently train on
healthy and unhealthy data sampled from two open brain MRI datasets. As measured by novel metrics that
closely match perceptual similarity of human observers, our simultaneously trained pTransGAN model outper-
forms the models individually trained on just healthy or unhealthy data. These encouraging results should be
further validated with independent paired and unpaired clinical datasets.
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1. INTRODUCTION

Recent techniques allow synthesis of multiple sequences of images from one k-Space sampling (the 2D or 3D
Fourier transform of the MR image being measured). For example, a typical MRI sequence consists of T1-
weighted sequence (favorable for observing large brain structures), T2-weighted sequence (useful for pathology),
and T2-FLAIR scan (useful for pathology with suppression of signal from water) (Figure 1A). While these scans
provide complementary and critical information (for example a tumor may not be seen in T1 but could show up
in T2 scans), they also make the MRI a time consuming (exam times lasting between 45 minutes and 1 hour)
and expensive imaging modality (average MRI cost is $2,600 in the US). With more than 40 million MRI scans
done each year in the US alone, is there a way to take a T1 scan and use machine learning algorithms to predict
the associated T2 scan, thus reducing acquisition times and improving MRI scanner throughput?1

Within modality translation, various approaches have been proposed. Rousseau et al.2 proposed to pick
nearest neighbors with similar properties from low-resolution images brain MRI and produce high-resolution
MRI using Markov random fields. Regression forest3 and convolutional network4 based approaches have also
been proposed. Recently, generative adversarial networks (GAN)5 have gained prominence in the field of image
translation. While the original GAN maps random noise to a target domain, a conditional GAN (cGAN) allows
images from an input domain to be mapped to a target domain. Armanious et al.6 and Dar et al.7 have used
cGAN for supervised image translation (images in the source and target domain come from the same subject).
cGAN have shown promise for unsupervised translation (images in the source and target domains are unpaired).8

Current literature models performing MRI translation utilize loss functions which assume that pixels are
independent,7 thus not allowing higher level features, like texture, to be accurately translated. In this study,
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Figure 1. A A typical MRI sequence consists of T1-weighted, T2-weighted, and T2-FLAIR sequences. B 6 U-blocks are
sequentially connected to create the generator of pTransGAN that progressively refines the generated images. The dotted
lines are skip connections.

we present pTransGAN, a cGAN that minimizes individual pixel losses and non-adversarial losses to accurately
transfer texture between domains. In the medical domain, translating both healthy and unhealthy images is
critical. While individual algorithms can translate healthy and unhealthy algorithms separately,7 no single
algorithm can perform equally well translation of both healthy and unhealthy T1 scans, which limits the clinical
use of such machine learning algorithms. Thus, we also present a novel simultaneous training protocol allowing
pTransGAN to perform well on both healthy MRI images from the IXI dataset9 and unhealthy MRI images
from the Brain Tumor Segmentation Challenge Dataset10 concurrently.

2. METHODS

Architectures: The pTransGAN model consists of a discriminator and a generator. The discriminator is a
version of the PatchGAN11 with a 70x70 receptive field that discriminates real pairs (real T1 and real T2)
and fake pairs (real T1 and generated T2). Input images are concatenated channel-wise and passed through 6
convolutions with 64, 128, 256, 512, 512, and 1 spatial filters with kernel size of 4x4. The stride for the first four
convolutions is 2, and stride for the rest is 1. The convolution layers are followed by batch normalization and
Leaky-ReLU (α = 0.2). Sigmoid activation is applied to the output to get a probability map. The generator of
pTransGAN consists of 6 sequentially connected U-blocks. The U-block’s down-sampling path consists of seven
convolutions with filters 64, 128, 256, 512, 512, 512, 512. The bottleneck consists of 512 filters and a ReLU
activation. The decoding path has seven convolutions with filters 512, 1024, 1024, 1024, 512, 128, and 64. All
convolutions have stride of 2, kernel of 4x4, and are followed by batch normalization and LeakyReLU (α = 0.2).
In order to reduce overfitting, the first three layers of the decoding path have a dropout layer associated with
them (rate=0.5). All of the layers were initialized with a Glorot initializer.12 The U-block also includes skip
connections that connects the corresponding encoding and decoding channels. In this study, all models were
developed using TensorFlow.

The discriminator trains on an adversarial and a pixel reconstruction loss, whereas the generator trains on
non-adversarial losses, namely the style and content loss: LpTransGAN = λcGANLcGAN +λL1LL1 +λstyleLstyle +
λcontentLcontent. The λ weigh the different loss components and were set to λcGAN = 1,11 λL1 = 100,11

λstyle = 1e − 3, λcontent = 1e − 5. The adversarial loss allows pTransGAN to create plausible transla-
tions of T1 images in the T2 domain whereas the pixel reconstruction loss (an L1 loss in this study), re-
duces the pixel to pixel error. The implementation of adversarial and L1 losses were the same as Arman-
ious et al.6 and Isola et al.11 The style and content loss use internal feature map activations of a pre-
trained VGG-19.13 To calculate the stylistic features of an image, an image is passed to VGG-19 and then
Gram matrix of the feature maps of the first layers of blocks 2, 3, and 4 is calculated and is normalized
by the dimensions of the feature map. The style loss is the square of the Frobenius norm of the differ-
ence between the feature correlations of the generated image, ŷ, and ground truth target image, y, over all
the selected convolutional blocks:6 Lstyle =

∑Total Blocks
i=1 λstyle, i ∗ 1

4d2
i
∗ ||Grami(y) − Grami(ŷ)||2F . Here,

λstyle,i > 0, weighs contribution of the ith convolutional block to the overall stylistic loss, were set so that the
2nd, 3rd, and 4th convolution blocks had the greatest contributions (in that order). The content loss is de-
fined as the Frobenius norm of the differences in the feature maps of the first layers of all convolutional blocks:



Lcontent =
∑Total Blocks

i=1 λcontent, i ∗ || Fi(y)− Fi(ŷ)||2F . λcontent,i > 0 were set so that all but the last convo-
lution block had equal contributions and the last block had 1/10 the contribution as the others. Addition of
non-adversarial losses destabilizes the training of the discriminator, thus spectral normalization was applied to
the weights of the discriminator.14 Through grid search The learning rate of the generator was found to be
0.0002 whereas that of the discriminator was set to 0.0008.15

Data: Healthy and unhealthy paired datasets (T1 and T2 MRI belong to the same patient) were used. Healthy
scans were acquired from the IXI dataset, which contained non-skull stripped axial T1 and T2 MRI for 577
patients. 461 scans were randomly chosen for training, 58 for hyperparameter optimization, and 58 for testing.
Each scan had 180 slices in the axial direction but only the middle 11 were chosen. The images were re-sampled
to (1,1,1) spacing and were reordered to be closest to canonical (RAS+) orientation. The MNI mask16 was
then applied to the images so that all images have the same size. For unhealthy MRI, the BRaTS2020 dataset
was used. The dataset had 494 patients with brain tumors. The T1 and T2 images were skull stripped and
registered. Data from 369 patients were reserved for training purposes and 62 patients were kept for testing.
Each patient has 150 scans in the axial direction; 14 scans from the middle of the brain were used for each
patient. No data from the unhealthy dataset was used for hyperparameter optimization. All images were sized
to 256x256x3 pixels.

Experiments: In this study, three experiments were carried out. Firstly, to see the effect of non-adversarial
losses, three variations pTransGAN model were trained and tested on healthy data with different loss configura-
tions: (A) adversarial and L1 loss, (B) adversarial, L1, and style loss, (C) adversarial, L1, style, and content loss.
Models (A) and (C) were also tested on unhealthy data. In a second experiment, pTransGAN with adversarial
and non-adversarial losses was trained and tested on unhealthy data. This model was also tested on the healthy
data to see if one model could be used for both domains. In a final experiment, the authors aimed to test a
simultaneous training protocol that could train a single model for both the healthy and unhealthy domains. For
each iteration of simultaneous training, a pTransGAN with adversarial, L1, style, and content loss was trained
three times on a healthy image and then three times on an unhealthy image, which is then repeated for all train-
ing images. In order to compare the generated original images, six different metric were used. These comprised
of three traditional metrics that have been used in numerous studies (Peak Signal to Noise Ratio or PSNR,6

Structural Similarity Index or SSIM,17 and Mean Squared Error or MSE 6). These metrics have previously failed
to match human perceptual levels,18 ,? so three novel metrics were also used (Learned Perceptual Image Patch
Similarity or LPIPS ,18 Universal Quality Index or UQI ,17 and Visual Information Fidelity or VIF 19). Com-
parison of metrics was performed via single tailed paired Wilcoxon signed rank test.20 All models were trained
for 100 epochs.

3. EXPERIMENTAL RESULTS

The first experiment trained and tested pTransGAN on healthy data with three loss configurations to determine
how the addition of non-adversarial losses would affect the translations. The addition of style and content loss
showed small improvements in the image comparison metrics (Table 1). The models with perceptual losses
outperformed the baseline models in the SSIM and LPIPS metrics (p-value ¡ 0.001). Since the LPIPS loss is
significantly lower for models with perceptual losses, this indicates that their image translations are likely to be
more perceptually similar to ground truth images for a human observer since LPIPS most closely matches human
visual similarity (Figure 2). With the addition of perceptual losses, we noticed that the translated features were
sharper and more distinctive in the generated images (Figure 2). Moreover, when the models with and without
perceptual losses trained on healthy data were tested on the unseen unhealthy data, it was found that the model
with perceptual losses outperformed the model without perceptual losses (Table 1). For example, the SSIM
metric increased by 32.7% and the LPIPS metric decreased by 36% with the addition of non-adversarial tests.

However, the translations of unhealthy images by pTransGAN trained on healthy images are not satisfactory.
When another pTransGAN model (with adversarial and non-adversarial losses) was trained and tested on un-
healthy data, it was found that the translation quality significantly improves (Table 1, Supplemental Figure1).
pTransGAN is capable of accurately producing the tumor shape and boundary as well as the healthy portions
of the MRI. Nevertheless, when this model was tested on healthy data, the performance of the model worsened
significantly. The pTransGAN model trained concurrently on healthy and unhealthy datasets through the novel



Table 1. Metrics for pTransGAN trained and tested on healthy and unhealthy data (s: style loss, c: content loss, sim:
Simultaneous training). Adversarial (adv) and L1 losses are used in all experiments.

Train set Healthy Healthy Healthy Healthy Unhealthy Sim. Sim.
Test set Healthy Healthy Unhealthy Unhealthy Unhealthy Healthy Unhealthy

Loss adv, L1 + s, c adv, L1 + s, c + s, c + s, c + s, c

PSNR (dB) 24.7 24.9 17.9 18.2 19.5 24.1 19.9
SSIM 0.875 0.883 0.572 0.685 0.831 0.851 0.825
MSE 0.003 0.004 0.020 0.017 0.012 0.004 0.011

LPIPS 0.061 0.060 0.256 0.197 0.113 0.065 0.132
UQI 0.941 0.952 0.501 0.551 0.835 0.885 0.862
VIF 0.882 0.875 0.778 0.601 0.752 0.821 0.762

Figure 2. A An example original and generated healthy T2 scan produced by pTransGAN trained on healthy data. B,
C, D Three zoomed in versions of the generated and original T2 scans. The pTransGAN is able to translate global image
properties as well as minute anatomical features.

simultaneous training protocol, however, performed equally well on the healthy and unhealthy datasets (Table
1). In some metrics, for example PSNR and UQI, the simultaneous model was able to outperform pTransGAN
models trained individually on healthy and unhealthy data.

4. DISCUSSION AND CONCLUSION

In this study, we present an end-to-end conditional generative adversarial framework, pTransGAN, that is capable
of translating both healthy and unhealthy T1 brain MRI into T2 MRI with high fidelity. In addition to using
adversarial losses for training, our framework leverages non-adversarial perceptual losses, specifically style and
content losses, to create sharper translated images. The non-adversarial losses also improve the robustness and
generalizability of pTransGAN in other domains. Overall, pTransGAN was able to translate global structures
and accurate minute anatomical features between the healthy and unhealthy T1 and T2 domains. The image
comparison metrics (Table 1) are comparable to those found by Dar et al.6 A simultaneous training protocol
was designed so that a single pTransGAN model could perform well on both healthy and unhealthy MR scans.
pTransGAN requires further improvements before it can be used in a clinical setting. Firstly we aim to adapt
pTransGAN to 3D data since a lot of brain imaging data is 3D and volumetric. Secondly, the unhealthy dataset
used in this study is limited to brain tumors, so to increase pTransGAN ’s robustness, we aim to train it on a
more diverse dataset. Finally, the image registration has shown to be critical in image translation.7 In future
studies, both healthy and unhealthy datasets would be registered against a common brain MRI mask.
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5. SUPPLEMENTAL FIGURES

Figure 1. An example original and generated unhealthy T2 scan produced by pTransGAN trained on unhealthy data.
The difference image displays the mean absolute error between the original and generated T2 images. The zoomed in
images also show how the tumor boundary, shape, and texture are accurately recreated,
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