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1. Motivation 

2.3 Random Forest Learning 

The thalamus is implicated in numerous neurodegenerative diseases  
(Alzheimer’s, Multiple Sclerosis, Parkinson’s).  

It is composed of neuronal clusters 
called nuclei, responsible for  
communication between various  
cerebral cortex and midbrain  
regions. The nuclei are  
differentially affected in disease. 

Minimal contrast in conventional  
MR. DTI (diffusion tensor imaging): 

Fractional Anisotropy (FA)   
shows thalamus boundary 

Changes in Principal Eigenvector  
(PEV) through Knutsson edge map 
show inter-nuclear boundaries 

Previous work relies on tensor statistics 
or connectivity, and requires 
some manual interaction.. 

Our method is first: 

Combining many modalities 

Fully automatic 

 

 

Goal is fully-automatic segmentation and parcellation of the thalamus using learned 
patterns in multi-modal features.  We integrate potentially discriminating features used in 
prior work, such as spatial coordinates, the Knutsson map, cortical connectivity, and 
other DTI-based and structural MRI information. 

ROI Identification: atlas-based, topology-preserving fuzzy classification—TOADS [Bazin 
and Pham]—provides gross thalamus. Axis-aligned circumscribing box provides ROI. 

Feature Selection: spatial coordinates, the Knutsson map, cortical connectivity, and 
other DTI-based and structural MRI information, associated with a nucleus label (or 
background) from a manual rater.  

Random Forest (RF): classification to discriminate thalamus from background and 
separately thalamic nuclei from each other, using all modalities available, per voxel.  

Target case:  

Find ROI using TOADS. 

Segment thalamus versus background with first RF, smooth with simple morphology 

Parcellate previous result using second (nucleus-nucleus) RF. 

2. Method 

Decision trees are constructed through random subsampling of the data and features 

[Breiman]. Here: single feature, minimum misclassification decision 

Train separate thalamus-background and nucleus-nucleus random forest ensembles 

Test: Apply thalamus-background RF on ROI, morphological correct  

     Apply nucleus-nucleus 

18 discriminating features from structural  
and diffusion-derived imaging data. 

MP-RAGE (magnetization-prepared rapid acq. with  
grad. echo) – improved contrast for MS lesions. 

FA (fractional anisotropy) – non-uniformity of diffusion  
computed using the eigenvalues of the diffusion tensor. 

MD (mean diffusivity) – average eigenvalue of tensor. 

KN: Knutsson (5D) mapping accounts for orientation 
ambiguity in the principal eigenvector [Knutsson]: 
    

     M([x,y,z]) = {x2 – y2, 2xy, 2xz, 2yz, (2z2 – x2 – 2y2)/√3 } 

Knutsson edge map ||G||F – orientation gradient 

Spatial location (3D) 

Cortical Connectivity (6D) through  
FSL Diffusion Toolbox: 
frontal 
precentral 
postcentral 
parietal 
occipital 
temporal 

2.2 Feature Selection 
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Goal: Fully automatic thalamus segmentation and nuclear parcellation from random forest learning on MR/DTI – derived features. 
 

4. Conclusions, Future Directions 

3. Experimental Results 

21 MP-RAGE and DTI on 3T 
MR scanner, resampled to 
.83mm isotropic 
 

Leave-one-out validation 
against manual delineations 
 

Significant improvement in  
thalamus segmentation vs. 
[FreeSurfer] and TOADS. 
two-sample Wilcoxon rank sum 
 

Results are achieved without  
any manual interaction. 
 

Parcellation: we do well on  
nuclear groups comparable 
to those in [Behrens]. 
 

Large variability in Dice for 
smaller nuclei  

Left: FA of left thalamux 
Middle: Knutsson map, 
showing changes in PEV.   
Right: thalamus nuclear 
delineation (manual) from 
the Knutsson edge map 
image: anterior nucleus 
[yellow], medialdorsal [red], 
ventral group [blue], and 
pulvinar [orange]. 

Paper site 

3D parcellation diagram.  Left: canonical axial view. 
Middle: sagittal lateral view. Right: axial view from 
inferior perspective (facing up).  The larger pulvinar and 
ventral group nuclei are shown in transparency.  

Above: whole brain axial view of 
MP-RAGE (top) and Knutsson 
edge map (bottom). Left: cortical 
labels (left), and (right) axial view 
of fiber counts given seeding 
within the thalamus.   

Goal is large-scale study of thalamic neuropathology using 
automated methods. In this paper we have extended thalamic 
parcellation to place us closer to that goal.  

Needed for improved accuracy:  

Individual nucleus random forest learners 

Pool results over a larger number of training cases.  

Incorporate deformable model or a priori shape, topology 

constraints. Per-voxel decision leads to significant noise 

Compare Knutsson to other tensor/PEV dissimilarity measures. 
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Variable importance in 
the Random Forest 
classification for 
thalamus-background 
(left), and nucleus-
nucleus (right). 

WA22 / 
Poster 5-169 

References: 
• Bazin (TOADS), P.L., Pham, D.L.: Homeomorphic brain image segmentation with 

topological and statistical atlases. Medical Image Analysis 12(5), 616–625 (2008) 
• Behrens, T.E.J., et al.: Non-invasive mapping of connections between human thalamus 

and cortex using diffusion imaging. Nature Neuroscience 6(7), 750–757 (2003) 
• Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) 
• FreeSurfer: Dale, A.M., et al.: Cortical Surface-Based Analysis I: Segmentation and 

Surface Reconstruction. NeuroImage 9(2), 179–194 (1999) 
• Knutsson, H.: Producing a Continuous and Distance Preserving 5-D Vector Repre-

sentation of 3-D Orientation. In: IEEE Computer Society Workshop on Computer 
Architecture for Pattern Analysis and Image Database Management. pp. 175–182 (1985) 

Manual Manual OM 18F OM 18F 


