

Automatic method for thalamus parcellation using multi-modal feature classification

Joshua V. Stough^a, Jeffrey Glaister^b, Chuyang Ye^b, Sarah Ying^c, Jerry L. Prince^b, Aaron Carass^b

a) Technica Corporation, Washington D.C. work performed at: Washington and Lee University Lexington, VA

Goal: Fully automatic thalamus segmentation and nuclear parcellation from random forest learning on MR/DTI – derived features.

1. Motivation

- The thalamus is implicated in numerous neurodegenerative diseases (Alzheimer's, Multiple Sclerosis, Parkinson's).
- It is composed of neuronal clusters called nuclei, responsible for communication between various cerebral cortex and midbrain regions. The nuclei are differentially affected in disease.
- Minimal contrast in conventional MR. DTI (diffusion tensor imaging):
 - Fractional Anisotropy (FA) shows thalamus boundary
 - Changes in Principal Eigenvector (PEV) through Knutsson edge map show inter-nuclear boundaries
- Previous work relies on tensor statistics or connectivity, and requires some manual interaction...
- Our method is first:
 - Combining many modalities
 - Fully automatic

2. Method

- Goal is fully-automatic segmentation and parcellation of the thalamus using learned patterns in multi-modal features. We integrate potentially discriminating features used in prior work, such as spatial coordinates, the Knutsson map, cortical connectivity, and other DTI-based and structural MRI information.
- **ROI Identification:** atlas-based, topology-preserving fuzzy classification—TOADS [Bazin and Pham]—provides gross thalamus. Axis-aligned circumscribing box provides ROI.
- Feature Selection: spatial coordinates, the Knutsson map, cortical connectivity, and other DTI-based and structural MRI information, associated with a nucleus label (or background) from a manual rater.
- Random Forest (RF): classification to discriminate thalamus from background and separately thalamic nuclei from each other, using all modalities available, per voxel.
- Target case:
 - Find ROI using TOADS.
 - Segment thalamus versus background with first RF, smooth with simple morphology
 - Parcellate previous result using second (nucleus-nucleus) RF.

This work was supported by the NIH/NINDS grants R21-NS082891 and R01-NS056307. Jeffrey Glaister is supported by the Natural Sciences and Engineering Research Council of Canada. We would like to thank the MICCAI reviewers for their suggestions in helping improve our approach.

18 discriminating features from structural and diffusion-derived imaging data.

- MP-RAGE (magnetization-prepared rapid acq. with grad. echo) – improved contrast for MS lesions.
- FA (fractional anisotropy) non-uniformity of diffusion computed using the eigenvalues of the diffusion tensor.
- MD (mean diffusivity) average eigenvalue of tensor.
- KN: Knutsson (5D) mapping accounts for orientation ambiguity in the principal eigenvector [Knutsson]:
 - $M([x,y,z]) = \{x^2 y^2, 2xy, 2xz, 2yz, (2z^2 x^2 2y^2)/\sqrt{3}\}$
- Knutsson edge map ||G||_F orientation gradient
- Spatial location (3D)
- **Cortical Connectivity (6D) through FSL Diffusion Toolbox:** frontal

precentral postcentral parietal occipital temporal

MPRAGE FA

2.3 Random Forest Learning

- Decision trees are constructed through random subsampling of the data and features [Breiman]. Here: single feature, minimum misclassification decision
- **Train** separate thalamus-background and nucleus-nucleus random forest ensembles
- Test: Apply thalamus-background RF on ROI, morphological correct **Apply nucleus-nucleus**

Department of b) Electrical and Computer Engineering, c) Radiology The Johns Hopkins University Baltimore, MD USA

WA22 Poster 5-169

2.2 Feature Selection

oove: whole brain axial view o IP-RAGE (top) and Knutsson bels (left), and (right) axial view f fiber counts given seeding vithin the thalamus.

Knutsson

/ariable importance in the Random Forest classification for thalamus-background (left), and nucleusnucleus (right).

- 21 MP-RAGE and DTI on 3T MR scanner, resampled to .83mm isotropic
- Leave-one-out validation against manual delineations
- Significant improvement in thalamus segmentation vs. [FreeSurfer] and TOADS. two-sample Wilcoxon rank sum
- **Results are achieved without** any manual interaction.
- Parcellation: we do well on nuclear groups comparable to those in [Behrens].
- Large variability in Dice for smaller nuclei

- **Needed for improved accuracy:**
 - Individual nucleus random forest learners
 - Pool results over a larger number of training cases.

References:

3. Experimental Results

Goal is large-scale study of thalamic neuropathology using automated methods. In this paper we have extended thalamic parcellation to place us closer to that goal.

Incorporate deformable model or a priori shape, topology constraints. Per-voxel decision leads to significant noise

Compare Knutsson to other tensor/PEV dissimilarity measures.

Bazin (TOADS), P.L., Pham, D.L.: Homeomorphic brain image segmentation with topological and statistical atlases. Medical Image Analysis 12(5), 616–625 (2008) • **Behrens**, T.E.J., et al.: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience 6(7), 750–757 (2003) • Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) • FreeSurfer: Dale, A.M., et al.: Cortical Surface-Based Analysis I: Segmentation and Surface Reconstruction. NeuroImage 9(2), 179–194 (1999) • Knutsson, H.: Producing a Continuous and Distance Preserving 5-D Vector Representation of 3-D Orientation. In: IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Image Database Management. pp. 175–182 (1985)