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Thalamic Parcellation From Multi-modal Data
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1. Motivation 2.2 Feature Selection 3. Experimental Results
« Thethalamus is involved in numerous neurodegenerative diseases . We integrate 12 potentially discriminating features from structural Ny - 22 MP-RAGE and DTI acquired on 3T MR scanner, resampled to .83mm isotropic

(Alzheimer’s, Multiple Sclerosis, Parkinson’s). and diffusion-derived imaging data.

- Bagged cross-validation against manual delineations, 10 x train-on-5.
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» Itis composed of neuronal clusters TOPrETEL nuctei . MP-RAGE (magnetization-prepared rapid acq. with grad. . . .
called nuclei, which are responsible \. < . Anterior - d for MS les - Results exceed previously measured inter-rater variability; while the results on the
dy : Dorsomedia i echo) —improved contrast for esions. : . . .
for communication between various [REEGGEG—_—EUT lateral and medial geniculates are poor, those nuclei are also exceedingly small,
cerebral cortex and midbrain E&?ﬁ!ary\b e w . FA (fractional anisotropy) — non-uniformity of diffusion potentially only two or three voxels in the original DTl resolution.
regions. The nuclei are differentially - computed using the eigenvalues of the diffusion tensor. _ ik : o in Nucleus Mean Dice Median Dice
affeCted In dlsease OA Pulvinar : Un 1€ preVIOUS Wor : t ese Anterior 0.576 £ 0.146 0.593
o V) TO motor . MD (mean diffusivity) — average eigenvalue of tensor. results were achieved without b= '
- While there is minimal contrast Sniciilsts ek ool B . 4 requiring extensive prior 0.641+0.142 0.664
in conventional MR, DTI shows 'géfﬁzfi,'.ate | * - The PEV is the unit vector associated with the largest knowledge of the target’s 0.833 + 0.074 0.838
promise (diffusion tensor imaging): To v h = R T PR RCE e eigenvalue of the diffusion tensor. Since opposing vectors thalamus boundary. Pulvinar 0.711 + 0.102 0.725
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shows thalamus boundary ; -r b -r oy difference measure between PEV’s. The Knutsson
. . . . 1 I r !;l. '_-rm. r il. ,;I‘!! mapplng accounts fOI’ thIS amblgmty [KnUtSSOn]: Perspectives of an example parcellation result on a right thalamus. Left: canonical axial
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show inter-nuclear boundaries (see 2.2). - Knutsson edge map ||G||z = rapidity of change in orientation
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2. Method 2.3 Random Forest Learning 4, Conclusions, Future Directions
= Our goal Is to automatically segment the thalamic nuclei using learned patterns in multi- » Decision trees are constructed through random subsampling of the data and features . Long-term goal is the large scale study of thalamic neuro- PSR OWI0 Fber Counts given
modal features. We integrate potentially discriminating features used in prior work, such [Breiman]. Here: single feature, minimum misclassification decision pathology using automated methods. In this paper we have sessliy il iyl
as spatial coordinates, the Knutsson map, and other DTI-based and structural MRI extended thalamic parcellation to place us closer to that goal. - '
information. - Train nucleus-nucleus and nucleus-boundary regions. For each region, output is a tree
. . _ _ _ _ ensemble that, given a new observation, returns a putative class label for that - We must improve accuracy, by training more specific (nucleus-
L. Training: we form a multi-dimensional feature per voxel, which we associate with observation and membership scores for that and the other (less likely) class labels. everything) random forest learners and pooling results over a
a nucleus label from a manual rater. |arger number of training cases.

- Test: apply the ensemble classifiers from the training cases to that subject’s data,

2. Random Forest classification to discriminate thalamus from background and L : :
combining the associated membership scores.

thalamic nuclei from each other, using all the multi-contrast data at our disposal.

« Compare Knutsson to other tensor/PEV dissimilarity measures.

Bar charts showing feature importance for typical nucleus-background (left) and nucleus-nucleus tree ensembles, and the associated target membership images. Spatial

location, MP-RAGE, FA, and MD discriminate the thalamus with background, while the Knutsson dimensions are more informative for nucleus-nucleus discrimination. ¥ CO rtl Cal conn eCtiVity o com b I ne g I O b al an d I O Cal I nfO rm atl on.

3. Target: random forest learners, when applied to a target case, inform the external
forces of the MGDM method: ventral -
other nuclei

» Multiple-object Geometric Deformable Model: level set
method enforcing topology constraints [Bogovic].

» Allows per-boundary forces and object-relative
Image appearance: nucleus-nucleus, nucleus-
background. This allows the random forest
learners to push individual shared boundaries.
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