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1. Motivation 

2.3 Random Forest Learning 

The thalamus is involved in numerous neurodegenerative diseases  
(Alzheimer’s, Multiple Sclerosis, Parkinson’s).  

It is composed of neuronal clusters 
called nuclei, which are responsible  
for communication between various  
cerebral cortex and midbrain  
regions. The nuclei are differentially  
affected in disease. 

While there is minimal contrast 
in conventional MR,  DTI shows 
promise (diffusion tensor imaging): 

Fractional Anisotropy (FA)   
shows thalamus boundary 

Changes in Principal Eigenvector  
(PEV) through Knutsson edge map 
show inter-nuclear boundaries (see 2.2). 

Others have used spatial location and tensor  
statistics [Wiegell], connectivity [Behrens],  
tensor homogeneity [Jonasson, Rittner] to  
differentiate among nuclei. 

No one has attempted to reproduce manual  
results without prior information on the target. 

 

 

Our goal is to automatically segment the thalamic nuclei using learned patterns in multi-
modal features.  We integrate potentially discriminating features used in prior work, such 
as spatial coordinates, the Knutsson map, and other DTI-based and structural MRI 
information. 

1. Training: we form a multi-dimensional feature per voxel, which we associate with 
a nucleus label from a manual rater.  

2. Random Forest classification to discriminate thalamus from background and 
thalamic nuclei from each other, using all the multi-contrast data at our disposal. 

3. Target: random forest learners, when applied to a target case, inform the external 
forces of the MGDM method: 

 Multiple-object Geometric Deformable Model: level set  
method enforcing topology constraints [Bogovic]. 

 Allows per-boundary forces and object-relative  
image appearance: nucleus-nucleus, nucleus- 
background.  This allows the random forest  
learners to push individual shared boundaries. 

 

2. Method 

Decision trees are constructed through random subsampling of the data and features 

[Breiman]. Here: single feature, minimum misclassification decision 

Train nucleus-nucleus and nucleus-boundary regions. For each region, output is a tree 

ensemble that, given a new observation, returns a putative class label for that 

observation and membership scores for that and the other (less likely) class labels. 

Test: apply the ensemble classifiers from the training cases to that subject’s data, 

combining the associated membership scores.  

We integrate 12 potentially discriminating features from structural  
and diffusion-derived imaging data. 

MP-RAGE (magnetization-prepared rapid acq. with grad.  
echo) – improved contrast for MS lesions. 

FA (fractional anisotropy) – non-uniformity of diffusion  
computed using the eigenvalues of the diffusion tensor. 

MD (mean diffusivity) – average eigenvalue of tensor. 

The PEV is the unit vector associated with the largest 
eigenvalue of the diffusion tensor. Since opposing vectors 
in Cartesian coordinates should represent the same 
orientation, there is a sign ambiguity in defining a 
difference measure between PEV’s.  The Knutsson  
mapping accounts for this ambiguity [Knutsson]: 
   M([x,y,z]) = {x2 – y2, 2xy, 2xz, 2yz, (2z2 – x2 – 2y2)/√3 } 

Knutsson edge map ||G||F – rapidity of change in orientation  

Spatial location 

2.2 Feature Selection 
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4. Conclusions, Future Directions 

3. Experimental Results 

22 MP-RAGE and DTI acquired on 3T MR scanner, resampled to .83mm isotropic 

Bagged cross-validation against manual delineations, 10 x train-on-5. 

Results exceed previously measured inter-rater variability; while the results on the 
lateral and medial geniculates are poor, those nuclei are also exceedingly small, 
potentially only two or three voxels in the original DTI resolution. 

Unlike previous work, these 
results were achieved without  
requiring extensive prior  
knowledge of the target’s  
thalamus boundary. 

Diagram showing thalamic 
nuclei and associated cortical 
and midbrain connectivity. 

Axial view in MP-RAGE, with left 
and right thalamus highlighted. 

Close-up of example thalamus. Left: in fractional anisotropy (FA), showing  
the thalamus boundary.  Middle: the Knutsson edge map, showing changes 
in PEV.  Right: left thalamus nuclear delineation (manual) from the Knutsson 
edge map image: anterior nucleus [yellow], medialdorsal [red], ventral group 
[blue], and pulvinar [orange]. 
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Nucleus Mean Dice Median Dice 

Anterior 0.576 ± 0.146 0.593 

MedialDorsal 0.641 ± 0.142 0.664 

Ventral Group 0.833 ± 0.074 0.838 

Pulvinar 0.711 ± 0.102 0.725 

Lateral Gen. 0.394 ± 0.202 0.405 

Medial Gen. 0.489 ± 0.244 0.515  

Perspectives of an example parcellation result on a right thalamus.  Left: canonical axial 
view. Middle: sagittal lateral view. Right: axial view from inferior perspective (facing up).  
The larger pulvinar and ventral group nuclei are shown in transparency.  

MP-RAGE      FA   MD   ||G||F          M1      M2        M3   M4      M5 

Bar charts showing feature importance for typical nucleus-background (left) and nucleus-nucleus tree ensembles, and the associated target membership images.  Spatial 
location, MP-RAGE, FA, and MD discriminate the thalamus with background, while the Knutsson dimensions are more informative for nucleus-nucleus discrimination. 

Axial view of fiber counts given 
seeding within the thalamus.   
Using FSL Diffusion Toolbox. 

Cortical surface colored by region, along with example connectivity-based parcellations of the left thalamus (axial view).  These FSL-based results are 
consistent with those of [Behrens], and show a large variance in parcellation.  Note the temporal versus occipital connectivity of the posterior areas. 

Long-term goal is the large scale study of thalamic neuro- 
pathology using automated methods. In this paper we have 
extended thalamic parcellation to place us closer to that goal.  

We must improve accuracy, by training more specific (nucleus-
everything) random forest learners and pooling results over a  
larger number of training cases. 

Compare Knutsson to other tensor/PEV dissimilarity measures. 

Cortical connectivity to combine global and local information. 

Above and right: whole brain axial view of MP-RAGE 
(top) and Knutsson edge map (right). Below: example 
vector-valued image (spatial location features not shown). 

Toy example of MGDM distance 
map and decomposition. 
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