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ABSTRACT
We present a novel local region approach for statistically char-
acterizing appearance in the context of medical image seg-
mentation via deformable models. Our appearance model re-
flects the inhomogeneity of tissue mixtures around the exte-
rior of the object of interest by determining mixture-consistent
local region types relative to the object boundary. The region
types are formed by clustering local regional image descrip-
tors. We partition the object boundary according to region
type and apply principal component analysis on the cluster
populations to acquire a statistical model of object appear-
ance that accounts for local variability in the object exterior.

We present results using this approach to segment blad-
ders and prostates in CT in the context of day-to-day adaptive
radiotherapy for prostate cancer. Results show improved fits
versus those obtained with a previously developed method.

Index Terms— Local appearance, Clustering methods,
Image match, Bayesian segmentation, Biomedical image pro-
cessing

1. INTRODUCTION

Medical image segmentation is a challenging and high cost
task. A goal common to many researchers around the world is
automating this task. In Bayesian deformable model segmen-
tation for medical images, a geometric model for an object of
interest is deformed via its shape parameters to fit an image
object that the model represents. Such segmentations pro-
ceed based on the optimization of an objective function that
includes a term measuring geometry-to-image match–image
match, for short. One image match that has proven successful
is the likelihood, which up to a logarithm measures the likeli-
hood of the model deformation parameters m given the image
information I , written as p(I|m). The likelihood function is
often trained on a set of ground truth segmentations in order
to drive the optimization to expert-like results.

Previous likelihood functions include those based on in-
tensity profiles that are either associated with individual im-
age points [1] or averaged over similar image points [2], and
those based on tuples that are formed from intensity-derived
features at an ordered collection of these points [3]. The
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first two of these methods have difficulty capturing the inter-
relations among pixel intensities in a region. The third method
makes the assumption of a unimodal distribution of each fea-
ture at each image point. However, we find that the distribu-
tion of intensities or other intensity-derived features at a point
or within a region is often multimodal because within various
image cases different tissue types fall at the same point.

Region-based methods address these concerns by model-
ing intensity distributions in object-relative regions. These
approaches typically sample image intensities within the ob-
ject interior or separately the interior and exterior. Some of
the resulting intensity models are trained on summary statis-
tics such as mean and variance [4], which themselves cap-
ture limited information. Other recently developed models
use the entire intensity distribution, and either compute an
image match with respect to a single reference distribution
[5], or most recently, train the variation in the distribution and
compute a real probability to use as the likelihood p(I|m) [6].

In [6] we use two object-relative regions: interior and ex-
terior to the object boundary. We sample from the regions and
convert the resulting distributions to regional intensity quan-
tile functions (RIQFs), which are amenable to linear statis-
tical methods such as principal component analysis (PCA).
One drawback of the method is its failure to account for the
inhomogeneity of tissue mixture as one moves around the ex-
terior. While it may be reasonable to model intensities in the
interior of an organ as samples from a single distribution, the
exterior may consist of neighboring organs, bones, and fat
and connective tissue, the intensities of which should not be
considered samples from a single source.

In this paper, we extend the work of [6] to account for the
diverse local intensity distributions found on the exterior of
an object of interest. We capture intensity quantile functions
at many local regions outside the object boundary in train-
ing and cluster on the pooled data, deciding the number of
sources, or region types. The region types robustly represent
intensity in larger areas of relative homogeneity, such as the
neighboring organs. We then partition the boundary on region
type using the data only at corresponding regions. Finally, we
apply PCA to the individual cluster populations to obtain a
Gaussian model of the variability in the intensity distribution
for each cluster. As a combination of the cluster probability
per region, our likelihood thus reflects the local variability of



Fig. 1. Sagittal views of a male pelvis in CT, with bladder boundary colored by region type. Left: a 3D view. Middle: the
in-plane contour also colored by region type, with the prostate shown for reference. Right: an off-sagittal 3D view of the same
bladder, now with the prostate also in 3D and in the foreground. Note the brighter prostate and bone tissues inferior to the
bladder correspond to a region type distinct from the darker bowel tissue regions superior to the bladder.

intensity on the exterior.
Section 2 reviews the intensity quantile methodology and

describes our construction of image match using clustering
and PCA in the quantile function space. Section 3 summa-
rizes the segmentation framework and presents results on blad-
ders and prostates. In section 4, we posit future directions.

2. QUANTILE FUNCTIONS AND IMAGE MATCH

We begin with a brief description of RIQFs, followed by de-
tails of our method in image match training and computation.

2.1. Regional Intensity Quantile Functions

In [6] we describe an approach to image match to proba-
bilistically represent the appearance of an object in an im-
age. Appearance is in the form of regional intensity quantile
functions, derived from intensity histograms within object-
relative regions, such as the interior near the object bound-
ary. The space of RIQFs has the advantage that certain com-
mon changes in a distribution, such as mean shift and variance
scaling, are represented linearly under an appropriate metric.
Principal component analysis is then used to characterize the
variability in a distribution.

In the following we review the construction of the RIQF
in the context of the distance metric that provides linearity.
Let q and r be the continuous, one-dimensional intensity dis-
tributions in two regions between which we wish to measure
the similarity. The Mallows distance [7] between q and r,
with cumulative distribution functions Q and R, respectively,
is defined as

Mp(q, r) =
(∫ 1

0

|Q−1(t)−R−1(t)|pdt

)1/p

. (1)

An n-dimensional RIQF is then the discretized inverse cu-
mulative distribution on intensities in a region, i.e., Q−1(t) or

R−1(t) in the above equation. Let these discretized quantile
functions be denoted q or r. Coordinate j of q or r stores the
average of the [ j−1

n , j
n ] quantile of the intensity distribution

for that region, i.e, qj =
∫ j/n

(j−1)/n
Q−1(t)dt. Then the Mal-

lows distance above corresponds (up to a scale factor) to the
Lp vector norm between q and r,

Mp(q, r) ≈

 1
n

n∑
j=1

||qj − rj ||p
(1/p)

. (2)

Through RIQFs, distributions are understood as points in an
n-dimensional Euclidean space in which distance corresponds
to the M2 metric, and mean and variance changes are linear.

2.2. Image Match

In this section, we describe our image match. In general, we
want an image match that considers regions relative to the
object of interest. The question is what constitutes a region.
In the context of medical image segmentation, consider that
an organ or other volume whose local intensity distributions
are distinguishable from those of neighboring volumes con-
stitutes such a region. That these regions exist is the cause
of inhomogeneity in the object exterior. Short of the less
tractable problem of modeling the 3D shapes of these regions,
we consider them only as they affect the local distributions
near the boundary of the object of interest. For this, we de-
fine our larger region types through clustering on the RIQFs
of smaller regions. Our idea is that an image match that ac-
counts for object-relative region type will provide superior fits
to a model that considers only the global exterior.

We now detail the construction of our image match in
training. The inputs to training are images of the object of
interest and the geometric models fitted to those images. Our
image match requires geometric correspondence on the bound-
ary of the object model, which allows us to compute RIQFs



Fig. 2. Clustering on the local RIQFs for the bladder exterior. The left shows the pooled RIQFs with the two cluster centers
overlaid. The middle and right images show the two cluster populations with mean and ±2 standard deviations overlaid. The
reasonable separation into lighter and darker distributions is evidenced in Fig. 1.

for regions centered at corresponding points densely sampled
around the object boundary. We partition the boundary by
RIQF cluster type, as measured in the space of local RIQFs.
Then at target time we use appearance statistics on region type
to compute an overall image match.

More precisely, over all training images Ip, we compute
RIQFs qi,p for many local regions anchored to individual
points i on the object boundary (e.g., 306 for the bladder, see
3.1 for details). The contribution of a voxel to qi,p is Gaussian
weighted by its distance to the surface and is equal to zero if
its closest point on the surface is not close enough to point i.
Most voxels contribute to several local regions. This overlap-
ping of regions means that the pooled samples may be cor-
related, potentially leading to a biased clustering. However,
having overlapping regions smoothes the final image match
and helps avoid local minima in the objective function.

We then cluster the pooled set of RIQFs for all boundary
points and images, {qi,p,∀i, p}, using Fuzzy C-means Clus-
tering [8]. We choose the number of clusters according the
target problem (see 3.1). The results are the set of region
types, M = {µk} represented as RIQFs, and cluster mem-
bership scores {ui,p

k ,∀i, p} that minimize the sum of score-
weighted distance in the M2 metric used:

M = min
{µ1,...,µK∈<n}

∑
∀i,p

K∑
k=1

ui,p
k ∗ ||qi,p − µk||2, (3)

with ui,p
k ∈ [0, 1] and

∑
k ui,p

k = 1 for given i and p (Fig. 2).
For the clustering procedure, all of the samples are consid-

ered together. For the next step, we use the explicit correspon-
dence between training boundaries to consider each surface
point separately and assign it to one of the µk from the clus-
tering step. For a given point i, we compute the total response
of the observed RIQFs to cluster k using the cluster mem-
bership scores, si

k =
∑

p ui,p
k . The cluster for which si

k is
maximum is most representative of the intensity distributions
seen at that point in training. We partition the boundary by
assigning the point i the corresponding region type (Fig. 1).

The last step in training is to perform PCA on the individ-
ual cluster populations in order to build Gaussian models of
the probability of RIQFs per region type. We first segregate
the pooled RIQFs according to maxk ui,p

k , the membership
scores, to provide the populations. After PCA, each surface
point is then assigned the Gaussian model of its previously as-
signed region type. Figure 2 shows the local region quantile
functions in training, with the cluster statistics overlaid.

Some points will have quite variable RIQFs over training,
so a particular cluster may not stand out as a clear choice.
This may occur where neighboring organs have widely dis-
parate configurations relative to the boundary of the object of
interest. In this case we use PCA on all the RIQFs as its ap-
pearance rather than those of one of the cluster populations,
to compensate for the greater variability at such points.

The final image match is best understood in the context
of its computation during the segmentation of a target image.
At the lowest iteration, a prospective boundary is supplied
and its image match requested. The program samples from
voxels near the boundary and populates the local RIQFs. For
each boundary point and its observed quantile function, a Ma-
halanobis distance is computed with respect to the principal
modes and variances of that point’s region type. The Maha-
lanobis distances are summed over all points, weighted by the
points’ comparative importance (related to how many voxels
contributed to the local RIQF).

3. RESULTS

We give segmentation results on bladder and prostate. Our
data consists of five patient image sets, each of approximately
16 daily CT scans taken during radiotherapy courses. The im-
ages have an in-plane resolution of 512 × 512 with voxel di-
mensions of 0.98mm × 0.98mm and an inter-slice distance of
3mm. We consider the patients separately, segmenting the im-
ages from one patient in a leave-one-day-out study where the
image match is trained on all daily images except the target.
In section 3.1 we discuss our shape model and segmentation



framework. In section 3.2 we present segmentation results.

3.1. The Segmentation Framework

We use m-rep models to describe the shape of prostates and
bladders [9]. The object representation is a discretely sam-
pled grid of medial atoms, where each atom consists of a
hub and two equal-length spokes. The boundary of the ob-
ject model passes orthogonally through the spoke ends. Prop-
erties, such as spoke length and orientation, are interpolated
between atoms in the grid. The model defines a coordinate
system which provides an explicit correspondence between
deformations of the same mrep model and the 3D volume in
the object boundary region. We perform semi-automatic seg-
mentation by starting with a mean model initialized in a target
image using a similarity transform computed from two land-
marks. Segmentation proceeds by a conjugate gradient opti-
mization of the posterior of the geometric parameters given
the image data.

We use a boundary point density that places 306 points on
the bladder model surface and 290 on the prostate at fixed ob-
ject relative coordinates. We set the number of clusters to be
two for both object exteriors, with the following justification.
The bladder is surrounded mostly by lower intensity bowel
and fat, with much brighter tissue at the pubic bone area and
prostate inferior to it. The prostate has brighter tissue exterior
to it in the pubic bones areas and bladder, with darker tissue
elsewhere (Fig. 1).

3.2. Segmentation Results

We are provided expert manual segmentations of the train-
ing images. M-reps are then automatically deformed into the
manual segmentations, leaving a set of m-rep models whose
boundaries are at the image object boundaries. By then plac-
ing the fitted m-reps into the associated greyscales, the local
RIQFs are sampled in the training images and consequently
the RIQF clusters (Fig. 2), region partitions (Fig. 1), and PCA
results are computed.

We use volume overlap (intersection over average) with
the expert manual segmentations to compare our boundaries
to boundaries computed using the global exterior image match
described in [6]. Segmentations using our local regions ap-
pearance scheme improve results in 57.5% (46 of 80) of blad-
ders and 53.8% (43 of 80) of prostates over all patients. Con-
sidered separately (as they are trained and segmented), our
scheme improved bladder segmentations in three of five pa-
tient image sets, with one wash and one failure, and improved
prostates in three patients with two failures (where the failure
is to improve results in a majority of the patient’s images). In
the successful patients, bladders were improved in 68.1% (30
of 44) of images while prostates were improved in 67.3% (33
of 49). These improvements are in the context of segmenta-
tions that already approach expert quality, with median over-

lap of 92.1%, exceeding the agreement we observe between
experts.

4. FUTURE DIRECTIONS

Segmentation using our method based on RIQF clustering
outperforms a global region approach on the given prostates
and bladders. However, the geometric correspondence that
the method depends on is in general problematic. Presently
the image correspondence that we in essence capture with our
region types is strongly tied to the geometric correspondence
on the object of interest. However, for example, the region
type representing the bladder may change position relative to
the prostate across days, while the geometric correspondence
of the prostates will not. Our goal is then to model the changes
in the region type partition on the object surface. We look
to improve results in cases where the geometric and image-
implied correspondences disagree, when both the global re-
gion and our fixed region methods perform less well. We will
use the target image to decide the region type locally, and then
correct this initial partition to make it more representative of
the corresponding regions as seen in training.
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