
Computer Science 112
Problem Set 6, 2%

Parallel Mergesort and Monte Carlo Simulation

In this assignment, you will implement a parallel mergesort and a parallel Monte Carlo simu-
lation for computing the value of π (pi). As your guide, you may use the example parallel*.py
programs we have seen and developed in class. Please submit parallelMergesort.py and
parallelMontePi.py to your turnin/ps6 subfolder. Both programs should show timings of the
sequential and parallel versions of the algorithms, as in the example programs.

Mergesort

There are various ways of approaching a parallel implementation of the mergesort algorithm.
A complicated implementation could involve a parallelization of the merge operation, where two
Processes responsible for separate sorted lists swap elements with each other to ensure that the
lists don’t overlap. Then the lists could simply be concatenated to form the overall sorted list.

You can take a more simple approach, duplicating the kind of parallelism used in the
parallelQuicksort.py example. Here, we keep the merge operation as before and rely on the
non-parallel mergesort, but simply run more than one instance of mergesort at a time.

Monte Carlo Simulation

Monte Carlo methods are the class of algorithms that use random sampling to compute their
results. For this part, you will implement both a sequential and parallel implementation of one of
the more basic Monte Carlo methods, that for computing the value of the mathematical constant π.
Your main method will show the sequential versus parallel timings for performing this computation.
The parallelIntegration.py example can be used as a guide.

The process for randomly approximating π is quite simple. Consider the disk of radius 1
centered at the origin. Considering only the part of the disk within the first quadrant (positive x
and y), we see the area within the disk is π/4 while the area within the unit square (from 0 to 1 in x
and y) is obviously 1. If we generate a random point in the unit square (using random.random() for
the x coordinate and again for the y coordinate), then the probability that the point is within the
unit disk is π/4. We can determine whether the point is within the disk by evaluating x2+y2 <= 1.
If we generate n points, then the proportion of points that were within the disk is an approximation
of π/4. Multiply by 4 and you have an approximation of π.
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