

Short-Answer Questions

1. Consider the number of processors used for a parallel computing application. Explain in detail
why it is not always useful to just have as many processors as possible.

2. What is Moore's Law? How does it relate to the development of multicore computers today?

3. Explain how a cluster would typically use both shared memory and distributed memory
paradigms. Explain how communication between processes would most likely occur in such a
cluster.

4. Many image processing algorithms are parallelizable. Consider the quantization code we wrote,
which reduces the number of bits used to represent each channel of color. Describe in detail how
you might parallelize this image operation in Python (as in, what parallel processes you would
instantiate, what parameters those processes would receive, etc.).

5. Describe the use of Process/Pipe versus Pool/map in Python. How did we use the two paradigms for
the algorithms we discussed (in detail)?

6. Consider the code below:

from multiprocessing import *

def child(q):

 s = 0

 for i in range(100):

 s = s + random.randint(1, 10)

 q.put(s)

def main():

 q = Queue()

 p1 = Process(target=child, args=(q,), name="p1")

 p2 = Process(target=child, args=(q,), name="p2")

 p1.start()

 p2.start()

 a1 = q.get()

 a2 = q.get()

 print "p1 sum:", a1

 print "p2 sum:", a2

The intent is that two processes would each add up 100 random numbers, with the sum for each
process printed and labeled as shown. There is something wrong with the code in main(), however.
Describe how you would change main() to fix the problem. (Do not change child().)

Programming Problems

1. Write parallelMergesort.py: There are various ways of approaching a parallel implementation of
the mergesort algorithm. A complicated implementation could involve a parallelization of the

merge operation, where two Processes responsible for separate sorted lists swap elements with
each other to ensure that the lists don't overlap. Then the lists could simply be concatenated to
form the overall sorted list.
You can take a more simple approach, duplicating the kind of parallelism used in the
parallelQuicksort.py example. Here, we keep the merge operation as before and rely on the
non-parallel mergesort, but simply run more than one instance of mergesort at a time.

2. Write a function sumListPar() that takes a list of numbers and returns the sum. It should follow
the following pseudocode:

def sumListPar(ls):
 start a child process to sum the first half of the list
 start a child process to sum the second half of the list
 print the sum of each half
 return the total sum

For example:

Note in the first example that I'm using:
import random

def makeRandomList(numNumbers):

 ls = []

 for i in range(numNumbers):

 ls.append(random.randint(1,100))

 return ls

So of course your answers will vary for the 1st example, since it's random. But the second
example should match for everyone, except that the order of the halves might be different on
different runs of the function.

Notes:
- Pass the entire list to each child, along with an indication of the indices it should be adding for
the given list.

3. Write a function named restaurant() that will be a "simulation" of a small restaurant. There will
be three processes: the main process, a "chef" process, and a "server" process. The main
process spawns the chef and server processes. The main process gets a number of meal orders
from the user, and passes the list of orders to the chef. The chef loves to take quick naps, so he
does the following:

for each meal:

 nap for 1 to 3 seconds
 prepare the current meal and send it to the server

For our purposes, the "sent meal" is just a string describing the meal. The server, in the
meantime, is waiting to receive one meal (string) after another from the chef, each of which he
then "delivers" to the customer (prints a message about the meal).

Here's an example:

So the user first types in the meals. The list of meals is sent to the chef. The chef sends one at a
time to the server, symbolizing the meal being "ready".

Note that only the chef receives a list of the meals from the main process. The server never
receives such a list!

Remember, the chef sleeps a bit between cooking each meal. So there will be a pause between
each "Here's your <meal>. Enjoy!" message, because the server is waiting for the next meal to
be ready. The server never sleeps, though. (Poor guy!)

You might imagine that we could make this more sophisticated in a computational modeling
kind of way, with various servers and chefs and rates of incoming orders, to determine what
kind of response time to expect in a given restaurant. We'll just keep things simple for now,
though.

Hint: In real life, a chef might eventually say to the server "Hey, that's all the orders we
have. We're done." Make something like this happen in your program too, otherwise the server
won't know when to stop serving.

The code for getting input from the user uses the append command for lists, which we haven't
seen before. So here's the code for that part. Study it a bit - I think you'll be able to see what's
happening.

 orders = []

 nextOrder = raw_input("Enter order (<Enter> when done): ")

 while nextOrder != "":

 orders.append(nextOrder)

 nextOrder = raw_input("Enter next order (<Enter> when done): ")

4. Recall that the Caesar cipher is a code where each letter is shifted 3 "down" the alphabet. For
example, all A's become D's, B's become E's, etc. Letters at the end of the alphabet should wrap
around, so for example, X becomes A.

Write a function named encodePar() (that is, "encode in parallel") that will ask the user to type
in a message, and then encode that message in parallel, with two child processes. First, a
demonstration:

Note:
- The encoding changes all letters to lower case, and totally ignores all non-letters. So for
example, that first w above is from the T of "The", and the last g is from the last d of "landed".
- Spawn two processes. Name the first one "first half", and the second "second half". To do this,
use the name argument to the Process function, like we saw in class. Do not pass an extra
argument in the args tuple specifying the name.
- The "first half" process handles the first half of the string, while the "second half" process
handles the second half.
- When both child processes are done encoding, they need to send their results back to the main
process.
- Make sure you control access to the shared stdout. No jumbled-up print statements are
allowed!
- It's quite possible that your processes won't "intertwine" in the way mine do above. The
reason mine are so intertwined is that I added a time.sleep(.01) call in my encoding
loop. Obviously you wouldn't want to do this in "real life", as it would slow things down. But for
the purposes of this exercise, it forces a process to give up control of the processor a little
sooner than it ordinarily would. If you don't put in a sleep like this, you may get something like:

That would be alright for this exercise. I expect, however, that if you put the sleep in, your
output should be intermingled like the first screenshot, so that would be a good thing to
check. Depending on your computer, you might experiment with sleeping for longer than .01
seconds. Strings of different lengths can cause some different behavior as well.

5. In this problem, we will use the idea of parallel pipeline computation to compute the solutions
to several binomial equations using the quadratic formula. First, let's see what the end result
will look like. Then we'll dive into the details.

Note that I typed in the file name "binomials.txt". You can use a file with contents such as:

5x^2 + 23 x + 9

14.5x^2 + (-12)x + 1

-2984632 x^2 + 7x + 8

2.718281828459045x^2 + 2.342x + (-7.64)

Of course, as always, your code should work for any specified .txt file, and should generate a
properly-named .sol.txt file.

Format of the Input File
As you can see, the input file (binomials.txt in the example above) is a file formatted in a
particular way:
- Each line in the file corresponds to the left-hand side of a binomial equation.
- The right hand side of the equation is assumed to be 0.
- In the formatting of the file, x^2 means x raised to the second power.

- You may assume that there will always be an explicit term for x^2, x, and the constant. For
example, the file would say 4x^2 + 0x + 3 instead of 4x^2 + 3.
- The operator between the terms will always be +. For example, the file would say 3x^2 + -
2x + 1 or 3x^2 + (-2)x + 1 instead of 3x^2 - 2x + 1. (Note the use of
parentheses!)
- There are no specific rules about spaces. For example, the file could say any of the following:
3x^2 + 2x + 1
3x^2+2x+1
3x^2 + 2x+1
3x^2 + 2x + 1
3 x^2+2x + 1
etc.
- There are two exceptions to the previous rule. First, x^2 will always appear together, never as

x ^ 2 or anything like that. Second, if a coefficient is negative, the minus sign will always be
right up against the coefficient.
- Multiplication between the coefficient and x term will always be implied. There will never be
an explicit * symbol.
- Coefficients may be expressed as decimals, but not fractions.
- There are no blank lines in the input file. Not even the last line! (So be careful with this when
you create your own file.)
- You may assume that every binomial equation in the file has real solutions. We will not be
dealing with complex ("imaginary") numbers here. Please ask me if you need help on this
mathematical concept.

Pipeline Design and Communication
In this program, you will have a parent process that will be in charge of the creation of three
children, corresponding to three steps in the pipeline:
1) Read the equations from the file
2) Extract the coefficients from each equation
3) Solve the binomial equation using the quadratic formula and write the solutions to a file.

If we call these child processes p1, p2, and p3, then the following directions of communication
are required:
p1: send to p2
p2: receive from p1, send to p3
p3: receive from p2

Graphically, we could think of this as:
p1 --> p2 --> p3

This is as we would expect for a pipeline. Note that each arrow above corresponds to a separate
queue. You can also think of the treehouse metaphor we used in class: with p2's treehouse
between p1's and p3's.

So the first arrow is the transmission of the line, as a string. The second arrow is the
transmission of the coefficients, as a list of the form [a,b,c]. Yes, you can put a list on a
queue with a single put operation.

Finally, you'll need the same "DONE" technique we saw in the chef/server example to enable
your processes to complete when there is no more input to work with. If you don't do this
properly, your processes won't actually complete. Rather, they'll be stuck waiting to get
something else from a queue. This would be a problem and would cause you to lose some
points.

To receive full credit, you must create three child processes to do these three steps above! So
p1 should only read from the file and send the line on. p2 should only extract the coefficients
and send them on. p3 should only apply the quadratic formula and write to the solution file.

Printing Progress
Recall that when I say that the processes are interleaved, that means that the operating system
is executing context switches between them, to give the illusion that the processes are running
at the same time even if we're only working with a single-core processor. Alternatively, we
could say that the processes are executing concurrently. If you are unsure what I'm talking
about here, please ask me about this.

You can see in the example that each process needs to give regular reports of what it's
doing. I'm requiring this so that we can see the interleaving of the three processes. Since all
three processes are printing, you'll need a lock to control access to stdout. Please examine the
function below:

def printMessage(lock, s):

 lock.acquire()

 print "(" + current_process().name + "): " + s

 lock.release()

You are required to use this function, without making any changes whatsoever to it, for the
printing in your three processes. This is a nice example of avoiding code duplication by splitting
out some functionality into a separate function.

If you use this function correctly, you should not have any prints in the functions of your three
children processes. They should just call printMessage instead.

Note that the code above assumes your processes have names, so please make it so.

Make sure absolutely all of your printing looks exactly like the example run above! The only
possible differences, of course, are:
- Your actual interleaving may be different each time you run the program.
- Your results will be different if you provide an input file with different contents.

Interleaving of the Processes
There is one slight complication about how the operating system interleaves the three
processes. We're actually not giving the processes very much work to do in this problem, so one
process may actually run to completion before a context switch occurs even once to another
process! One thing we can do, just for educational purposes here, is purposely make the
processes take a little longer by inserting a time.sleep(.01) call into each of the child
processes' loop. So please be sure to do this, otherwise your output won't appear interleaved
as mine does above. You must do this!

It is important you understand what I'm talking about here with interleaving and why the

sleep call changes things, so again, please make sure you talk with me if you're unclear on this.

Extracting Coefficients
Extracting the coefficients from a line read from a file is not as hard as it might first
appear. Some tips:
- First, use replace (a string method) to get rid of stuff you don't care about.
- You should use find to find important markers like "x^2".
- You might, or might not, find it useful to use slicing to cut off and throw away part of a string

once you're done working with it. If you do this in the right way, finding "x" will actually get
you the x term rather than the x^2 term...
- Don't forget about rfind - that may be helpful too, or maybe not, depending on how you do
things. See p. 96 of the text for all the string functions.

General Problem-Solving Strategies
It will be helpful to remember the general strategies we've talked about throughout the
semester. In particular, I encourage absolutely everyone to break this problem up into
pieces. For example:
1) Write a program that takes a string representing a binomial as input, and extracts the
coefficients.
2) Write a program that takes binomial coefficients, and computes the solutions to the
corresponding binomial equation.
3) Write a program that creates three child processes: p1, p2, and p3. Make p1 pass a number
(or something) to p2, which then passes it to p3, which then prints it.
4) Write a program that does as in #3, but p1 reads numbers (or something) from a file in a loop,
passes them one at a time to p2, which receives them in a loop and passes them one at a time
to p3, which receives them in a loop and prints them.

Do you see how solving the above four smaller problems is directly related to solving the main
problem here? If you don't, please look into this a bit more and talk with me. If you take this
problem one step at a time as I've shown above, it will be much easier to handle things, rather
than trying to do everything at once and having a huge number of problems everywhere all at
once. If you ignore this advice, I promise this problem will be very hard!

