
Steven Bogaerts

Assistant Professor of Computer Science

Wittenberg University

Springfield, OH

Joshua Stough

Assistant Professor of Computer Science

Washington and Lee University

Lexington, VA

http://cs.wlu.edu/~stough/SC13

http://joshuastough.com/SC13

 Easy!
 www.python.org, “Download”, “Python 2.7.3”

 2.x or 3.x?
 3.x has some changes to the base language (not

backwards compatible)
 Better handling of unicode
 Exception chaining
 …

 Many third-party libraries still support only 2.x
 Most current Linux distributions and Macs us 2.x as

default

 So we’ll stick with 2.x here

http://www.python.org/

 Simple syntax (as we’ll demonstrate)
 No variable declaration

 Variables can hold any type

 Automatic garbage collection

 No explicit memory management

 Allows consideration of interesting problems sooner

 Students definitely need to learn the concepts Python
brushes over…
 …but not necessarily in the first course or two

 What is the meaning of each const?
const string & foo(const int * const p) const;

 Reasons:
 So you can follow the rest of our presentation

 Demonstrate the kinds of concepts you can consider
early on with Python in CS1

 See pythonCrashCourse.py

 Our purpose: For learning, not for all-out speed

 Options
 pprocess

 Celery

 MPI4Py

 Parallel Python

 Multiprocessing module

 Comparatively simple

 Good documentation

 Comes with Python 2.6+

 Does not work in IDLE
 Edit with any editor, then run at terminal
 Might need to set PYTHONPATH environment variable to your

Python installation’s Lib directory
 Could use a batch file:
SET PYTHONPATH="C:\Program Files\Python\2.7.3\Lib“

"C:\Program Files\Python\2.7.3\python.exe“

 Then use Python import command to load a file

 So how do we teach parallelism with the multiprocessing
module?

Using the Python Multiprocessing Module

 First attempt: Fall 2009
 Tried parallelism too early in the semester!

(about 1/3 of the way through CS1)
 Introduction of some concepts needed better organization

 Fall 2010, Fall 2011, Spring 2013
 Concepts introduced much later

(about 3/4 of the way through CS1)
 Now a smooth integration with the rest of the course

 Students having this CS1 experience (and related
experiences in CS2, etc.) have shown strong understanding
of parallelism before beginning our Sequential and Parallel
Algorithms course

 Yes, it is a new topic, and yes, a little something might
need to be cut

 We ended up shifting concepts that are also covered in
other courses
 Our CS2 covers writing classes in great detail, so much

less is now in CS1

 But parallelism also serves as a great complement to
the rest of CS1 (and other courses, in different ways)
 A great medium to study and review core CS1 topics

 We do some non-Python introduction first:
 The world is “obviously” parallel.

 Big-picture descriptions of some applications.

 Physical activities
 Low-level: binary adder

 Higher-level: card sorting

 Terminology, history

 Communication
 Shared memory vs. message passing

 All materials on website, students follow along on own
computer

 Big picture on slides
 Overview at the start

 “Cheat sheet” when done

 Heavily-commented code illustrates details
 Some completed examples

 Some exercises

 Pause after each section for students to fill in “Key Ideas”
sections

 Process
 A running program

 Keeps track of current instruction and data

 Single-core processor: only one process actually runs at a
time
 Many processes “active” at once – OS goes from one to another

via a context switch

 Threads
 A process can contain multiple threads – things that

can/should happen at the same time
 Multi-core processor: multiple threads of a given process

can run at the same time

 Tuples
 Comma required for length 1

 Comma optional for length >1

 Keyword arguments
 For example: func(y = 14, x = 27)

 from random import randint
randint(low, high)

 Includes low and high!

 from time import time, sleep

 time.time() for current time in seconds
 Call a second time and subtract for elapsed time

 time.sleep(seconds) to sleep for that amount of time

 from multiprocessing import *

 Create and start a process:
 procVar =

Process(target = funcNoParen, args = tupleOfArgs)

 procVar.start()

 Get process info:
 current_process().pid

 current_process().name

 Gives name specified by the “name=___” argument in process
creation

 Only one process can acquire a given lock at a time
 Any other process that tries will sleep until lock is

released

 Use to control access to stdout and other shared
resources

 lockVar = Lock()

 Pass lockVar to all processes that need it

 lockVar.acquire()

 lockVar.release()

 queueVar = Queue()

 Pass queueVar to all processes that need it

 queueVar.put(dataToSend)

 dataToReceive = queueVar.get()

 Process will sleep until there’s something to get

 The first data put into the queue is the first data get-ed
out of the queue

 procVar.join()

 Makes current process sleep until the procVar process
completes

 When would a process sleep?

 Calls the time.sleep function

 Waiting for a process to finish (procVar.join())

 Waiting to acquire a lock
(lockVar.acquire())

 Waiting for something to be put in the queue
(queueVar.get())

Using the Python Multiprocessing Module

 First day: sort a deck of cards, and show me how
 In pairs, precise, simple steps

 If you can’t describe what you are doing as a process, you
don't know what you're doing. (W.E. Deming)

 Introduces:
 variable assignment (‘take that card…’), conditionals,

expressions (comparison), loops, (potentially) functional
abstraction (find min)

 Much later, during search/sorting/complexity

 Now they’re ready, know O(N^2) sorting

 Whenever there is a hard job to be done I assign it to a lazy
man; he is sure to find an easy way of doing it. (W.
Chrysler)

 Pool/map: easy, great for data parallelism
 parallel[Hello|SumPrimes|MontePi|Integration|MergesortPool].py

 from multiprocessing import Pool

 mypool = Pool(processes=N)

 mypool.map(myfunc, args)

 args is list of arguments to evaluate with myfunc

 myfunc can accept only one argument (using wrapping)

 Process/Pipe: data/task parallelism
 parallel[Quicksort|Mergesort].py

 parentConn, childConn = Pipe()

 duplex (both can send and receive)

 Obviously:
http://docs.python.org/library/multiprocessing.html

 Our code: http://cs.wlu.edu/~stough/SC13/

 CS1 quotes:
http://www.cs.cmu.edu/~pattis/quotations.html

 Jokes:
http://www.phy.ilstu.edu/~rfm/107f07/epmjokes.html

 Distributed computing using multiprocessing:
http://eli.thegreenplace.net/2012/01/24/distributed-computing-in-python-with-multiprocessing/

 Various options for PDC in Python:
http://wiki.python.org/moin/ParallelProcessing
http://wiki.python.org/moin/DistributedProgramming
http://code.google.com/p/distributed-python-for-scripting/

http://docs.python.org/library/multiprocessing.html
http://joshuastough.com/SC12/
http://www.cs.cmu.edu/~pattis/quotations.html
http://www.phy.ilstu.edu/~rfm/107f07/epmjokes.html
http://eli.thegreenplace.net/2012/01/24/distributed-computing-in-python-with-multiprocessing/
http://eli.thegreenplace.net/2012/01/24/distributed-computing-in-python-with-multiprocessing/
http://eli.thegreenplace.net/2012/01/24/distributed-computing-in-python-with-multiprocessing/
http://eli.thegreenplace.net/2012/01/24/distributed-computing-in-python-with-multiprocessing/
http://eli.thegreenplace.net/2012/01/24/distributed-computing-in-python-with-multiprocessing/
http://eli.thegreenplace.net/2012/01/24/distributed-computing-in-python-with-multiprocessing/
http://eli.thegreenplace.net/2012/01/24/distributed-computing-in-python-with-multiprocessing/
http://eli.thegreenplace.net/2012/01/24/distributed-computing-in-python-with-multiprocessing/
http://eli.thegreenplace.net/2012/01/24/distributed-computing-in-python-with-multiprocessing/
http://eli.thegreenplace.net/2012/01/24/distributed-computing-in-python-with-multiprocessing/
http://eli.thegreenplace.net/2012/01/24/distributed-computing-in-python-with-multiprocessing/
http://wiki.python.org/moin/ParallelProcessing
http://wiki.python.org/moin/DistributedProgramming
http://code.google.com/p/distributed-python-for-scripting/
http://code.google.com/p/distributed-python-for-scripting/
http://code.google.com/p/distributed-python-for-scripting/
http://code.google.com/p/distributed-python-for-scripting/
http://code.google.com/p/distributed-python-for-scripting/
http://code.google.com/p/distributed-python-for-scripting/
http://code.google.com/p/distributed-python-for-scripting/

