
Steven Bogaerts

Assistant Professor of Computer Science

Wittenberg University

Springfield, OH

Joshua Stough

Assistant Professor of Computer Science

Washington and Lee University

Lexington, VA

http://cs.wlu.edu/~stough/SC13

http://joshuastough.com/SC13

 Easy!
 www.python.org, “Download”, “Python 2.7.3”

 2.x or 3.x?
 3.x has some changes to the base language (not

backwards compatible)
 Better handling of unicode
 Exception chaining
 …

 Many third-party libraries still support only 2.x
 Most current Linux distributions and Macs us 2.x as

default

 So we’ll stick with 2.x here

http://www.python.org/

 Simple syntax (as we’ll demonstrate)
 No variable declaration

 Variables can hold any type

 Automatic garbage collection

 No explicit memory management

 Allows consideration of interesting problems sooner

 Students definitely need to learn the concepts Python
brushes over…
 …but not necessarily in the first course or two

 What is the meaning of each const?
const string & foo(const int * const p) const;

 Reasons:
 So you can follow the rest of our presentation

 Demonstrate the kinds of concepts you can consider
early on with Python in CS1

 See pythonCrashCourse.py

 Our purpose: For learning, not for all-out speed

 Options
 pprocess

 Celery

 MPI4Py

 Parallel Python

 Multiprocessing module

 Comparatively simple

 Good documentation

 Comes with Python 2.6+

 Does not work in IDLE
 Edit with any editor, then run at terminal
 Might need to set PYTHONPATH environment variable to your

Python installation’s Lib directory
 Could use a batch file:
SET PYTHONPATH="C:\Program Files\Python\2.7.3\Lib“

"C:\Program Files\Python\2.7.3\python.exe“

 Then use Python import command to load a file

 So how do we teach parallelism with the multiprocessing
module?

Using the Python Multiprocessing Module

 First attempt: Fall 2009
 Tried parallelism too early in the semester!

(about 1/3 of the way through CS1)
 Introduction of some concepts needed better organization

 Fall 2010, Fall 2011, Spring 2013
 Concepts introduced much later

(about 3/4 of the way through CS1)
 Now a smooth integration with the rest of the course

 Students having this CS1 experience (and related
experiences in CS2, etc.) have shown strong understanding
of parallelism before beginning our Sequential and Parallel
Algorithms course

 Yes, it is a new topic, and yes, a little something might
need to be cut

 We ended up shifting concepts that are also covered in
other courses
 Our CS2 covers writing classes in great detail, so much

less is now in CS1

 But parallelism also serves as a great complement to
the rest of CS1 (and other courses, in different ways)
 A great medium to study and review core CS1 topics

 We do some non-Python introduction first:
 The world is “obviously” parallel.

 Big-picture descriptions of some applications.

 Physical activities
 Low-level: binary adder

 Higher-level: card sorting

 Terminology, history

 Communication
 Shared memory vs. message passing

 All materials on website, students follow along on own
computer

 Big picture on slides
 Overview at the start

 “Cheat sheet” when done

 Heavily-commented code illustrates details
 Some completed examples

 Some exercises

 Pause after each section for students to fill in “Key Ideas”
sections

 Process
 A running program

 Keeps track of current instruction and data

 Single-core processor: only one process actually runs at a
time
 Many processes “active” at once – OS goes from one to another

via a context switch

 Threads
 A process can contain multiple threads – things that

can/should happen at the same time
 Multi-core processor: multiple threads of a given process

can run at the same time

 Tuples
 Comma required for length 1

 Comma optional for length >1

 Keyword arguments
 For example: func(y = 14, x = 27)

 from random import randint
randint(low, high)

 Includes low and high!

 from time import time, sleep

 time.time() for current time in seconds
 Call a second time and subtract for elapsed time

 time.sleep(seconds) to sleep for that amount of time

 from multiprocessing import *

 Create and start a process:
 procVar =

Process(target = funcNoParen, args = tupleOfArgs)

 procVar.start()

 Get process info:
 current_process().pid

 current_process().name

 Gives name specified by the “name=___” argument in process
creation

 Only one process can acquire a given lock at a time
 Any other process that tries will sleep until lock is

released

 Use to control access to stdout and other shared
resources

 lockVar = Lock()

 Pass lockVar to all processes that need it

 lockVar.acquire()

 lockVar.release()

 queueVar = Queue()

 Pass queueVar to all processes that need it

 queueVar.put(dataToSend)

 dataToReceive = queueVar.get()

 Process will sleep until there’s something to get

 The first data put into the queue is the first data get-ed
out of the queue

 procVar.join()

 Makes current process sleep until the procVar process
completes

 When would a process sleep?

 Calls the time.sleep function

 Waiting for a process to finish (procVar.join())

 Waiting to acquire a lock
(lockVar.acquire())

 Waiting for something to be put in the queue
(queueVar.get())

Using the Python Multiprocessing Module

 First day: sort a deck of cards, and show me how
 In pairs, precise, simple steps

 If you can’t describe what you are doing as a process, you
don't know what you're doing. (W.E. Deming)

 Introduces:
 variable assignment (‘take that card…’), conditionals,

expressions (comparison), loops, (potentially) functional
abstraction (find min)

 Much later, during search/sorting/complexity

 Now they’re ready, know O(N^2) sorting

 Whenever there is a hard job to be done I assign it to a lazy
man; he is sure to find an easy way of doing it. (W.
Chrysler)

 Pool/map: easy, great for data parallelism
 parallel[Hello|SumPrimes|MontePi|Integration|MergesortPool].py

 from multiprocessing import Pool

 mypool = Pool(processes=N)

 mypool.map(myfunc, args)

 args is list of arguments to evaluate with myfunc

 myfunc can accept only one argument (using wrapping)

 Process/Pipe: data/task parallelism
 parallel[Quicksort|Mergesort].py

 parentConn, childConn = Pipe()

 duplex (both can send and receive)

 Obviously:
http://docs.python.org/library/multiprocessing.html

 Our code: http://cs.wlu.edu/~stough/SC13/

 CS1 quotes:
http://www.cs.cmu.edu/~pattis/quotations.html

 Jokes:
http://www.phy.ilstu.edu/~rfm/107f07/epmjokes.html

 Distributed computing using multiprocessing:
http://eli.thegreenplace.net/2012/01/24/distributed-computing-in-python-with-multiprocessing/

 Various options for PDC in Python:
http://wiki.python.org/moin/ParallelProcessing
http://wiki.python.org/moin/DistributedProgramming
http://code.google.com/p/distributed-python-for-scripting/

http://docs.python.org/library/multiprocessing.html
http://joshuastough.com/SC12/
http://www.cs.cmu.edu/~pattis/quotations.html
http://www.phy.ilstu.edu/~rfm/107f07/epmjokes.html
http://eli.thegreenplace.net/2012/01/24/distributed-computing-in-python-with-multiprocessing/
http://eli.thegreenplace.net/2012/01/24/distributed-computing-in-python-with-multiprocessing/
http://eli.thegreenplace.net/2012/01/24/distributed-computing-in-python-with-multiprocessing/
http://eli.thegreenplace.net/2012/01/24/distributed-computing-in-python-with-multiprocessing/
http://eli.thegreenplace.net/2012/01/24/distributed-computing-in-python-with-multiprocessing/
http://eli.thegreenplace.net/2012/01/24/distributed-computing-in-python-with-multiprocessing/
http://eli.thegreenplace.net/2012/01/24/distributed-computing-in-python-with-multiprocessing/
http://eli.thegreenplace.net/2012/01/24/distributed-computing-in-python-with-multiprocessing/
http://eli.thegreenplace.net/2012/01/24/distributed-computing-in-python-with-multiprocessing/
http://eli.thegreenplace.net/2012/01/24/distributed-computing-in-python-with-multiprocessing/
http://eli.thegreenplace.net/2012/01/24/distributed-computing-in-python-with-multiprocessing/
http://wiki.python.org/moin/ParallelProcessing
http://wiki.python.org/moin/DistributedProgramming
http://code.google.com/p/distributed-python-for-scripting/
http://code.google.com/p/distributed-python-for-scripting/
http://code.google.com/p/distributed-python-for-scripting/
http://code.google.com/p/distributed-python-for-scripting/
http://code.google.com/p/distributed-python-for-scripting/
http://code.google.com/p/distributed-python-for-scripting/
http://code.google.com/p/distributed-python-for-scripting/

