
Lecture Notes for CSCI 351: Distributed Computing

Set 8-Failure Detectors[2]

Professor Talmage

May 8, 2023

1 Definition

One way to solve problems in failure-prone distributed systems is to detect failures and proceed with only
the correct processes. This allows us to avoid scenarios when we must wait for crashed processes to ensure
that they do not wake up and perform an action contradictory to one we have already taken, such as
deciding a different value in a consensus algorithm.

Of course, in a truly asynchronous system, detecting failures is generally impossible, since the same
indistinguishability of a crashed versus slow process holds. What failure detectors do, instead, is allow
us to characterize the minimum amount of synchrony that is required for solving consensus. If we can
determine the weakest failure detector to solve a particular problem, then we can ask how much synchrony
is required to implement that failure detector, and that minimum synchrony is also the minimum amount
required to solve the original problem. We typically focus more on comparing weakest failure detectors,
though, than actually trying to quantify the synchrony required to implement one, as defining/quantifying
synchrony is difficult.

We will work in asynchronous, crash-prone systems, similar to that from the FLP result. We may work
in either message-passing or shared memory. A failure detector is an algorithm which stores a variable
suspecti at each process pi, and which acts independently of any other algorithm running (other algorithms
may not update suspecti). suspecti is a set of processes which pi currently suspects of having crashed.
suspecti can grow and shrink, adding and removing processes multiple times. If a process c is in suspecti
from some point in time and never leaves it, we say that pi permanently suspects c from that point in time
on.

To specify the behavior of a failure detector, we define conditions on the relation of processes’ suspecti
variables and the set of processes which have actually crashed. Recall that a correct process is one which
does not crash, a faulty process is one that crashes at some point in an execution, then within an execution
we talk about crashed and alive processes at a particular point in time as those which have or have not
crashed before that point in time.

The first property we define, Completeness, discusses how effectively the failure detector reports crashed
processes. Eventually, every correct process should suspect every crashed process. That is, for any correct
pi, suspecti should eventually contain every process that crashes.

Exercise: What is the simplest complete failure detector?

To avoid the trivial solution of always suspecting all processes, we add conditions demanding that pro-
cesses not over-suspect. These are known as Accuracy conditions, and there are several different conditions
a failure detector may provide:

• Strong Accuracy: No process suspects any live process. That is, no process appears in any suspecti
before it crashes.

1



Prof. Talmage CSCI 351: Failure Detectors Spring 2023

• Weak Accuracy: Some correct process is never suspected.

• Eventual Strong Accuracy: Eventually, no correct process is in any suspecti.

• Eventual Weak Accuracy: Eventually, some correct process is not in any suspecti.

This gives a set of four possible failure detector classes:
Accuracy

Completeness: Strong Weak Eventual Strong Eventual Weak

Strong Completeness Perfect: P Strong: S Eventually Perfect: ♢P Eventually Strong: ♢S

2 Reductions

We want to understand how these four different failure detectors relate. Specifically, if one is stronger
than another, and we can solve a problem with the weaker one, then we can solve that problem with the
stronger one, as well. We can then ask “What is the weakest failure detector required to solve problem
X?”.

To reduce failure detector A to failure detector B, we give an algorithm which relies on B and provides
a set outputi at each process. If outputi provides the guarantees of A, then we have reduced A to B by
showing that it is sufficient for the system to provide B for us to have the knowledge guaranteed by A.

For a first result, we will show that our definition of completeness is stronger than we need. Instead of
eventually having every correct process suspect every crashed process, we can just require that eventually,
for every crashed process c, there is some correct process p that permanently suspects c. This is known as
Weak Completeness.

Accuracy
Completeness: Strong Weak Eventual Strong Eventual Weak

Strong Completeness Perfect: P Strong: S Eventually Perfect: ♢P Eventually Strong: ♢S
Weak Completeness Q Weak: W ♢Q Eventually Weak: ♢W

Exercise: How do you think we can get from a each failure being detected at one process to
being detected at all processes?

The following code provides strong completeness from any failure detector that provides weak com-
pleteness.

Algorithm 1 Code for each pi to implement a strongly complete failure detector, assuming D is a weakly-
complete failure detector.

Initially:
1: outputi = ∅

Repeat Forever:
2: send(i,D.suspectsi) to all
3: Upon Receive(j, suspectsj)
4: outputi = (outputi ∪ suspectsj) \ {j}

Exercise: Choose an accuracy condition and argue that if D satisfies that condition, then the
above algorithm will, as well.

What this means is that if we can solve a problem with a failure detector in the top row, then we can
also solve it with the failure detector in the same column of the second row. Thus, we can write algorithms
using stronger tools, and automatically convert them to algorithms which work in less-friendly systems.

2



Prof. Talmage CSCI 351: Failure Detectors Spring 2023

3 Solving Consensus

Recall that if we can implement consensus, then we can implement any other ADT we like. Thus, we want
to know whether we can use a particular failure detector to solve consensus. It is important to realize that
we are modifying our system model, since we know that consensus is impossible in an asynchronous, crash-
tolerant model. Adding a failure detector adds some level of synchrony, though how much is sometimes
unclear.

We will outline a consensus algorithm which relies on ♢S, which means that it is actually possible to
solve consensus in a model which only provides ♢W . Note that this algorithm is in a shared memory
model, for simplicity.

Exercise: Restate ♢S’s and ♢W ’s guarantees in English.

Algorithm 2

1: function Decide(x)
2: r = 0
3: while true do
4: c = r mod n
5: if i == c then
6: ans = safe− phase(r, x)
7: if ans ̸= ⊥ then decisionV al = ans
8: end if
9: else

10: wait until c ∈ suspecti or Rc.phase ≥ r
11: end if
12: r+ = 1
13: end while
14: function safe-phase(r, x)
15: write r into own register Ri

16: read all other processes’ registers, abort if any has larger phase number
17: choose value from other process’ register with largest phase number as preference, write it or x if

none found
18: read all other processes’ registers, abort if any has larger phase number
19: decide preference

4 Implementing Failure Detectors

First, consider a high-level idea: each process will periodically announce that it is still alive. This is known
as a heartbeat algorithm. Processes can use timeouts to note that they have not heard from a particular
other process for a while and suspect that they have crashed.

Exercise: What completeness and accuracy guarantees will this provide? On what system
assumptions does it depend?

As long as processes have reasonably accurate local clocks, this will give strong completeness, as eventu-
ally every live process will suspect every crashed process. There are no true accuracy guarantees, however,
as each correct process’ heartbeats can be repeatedly delayed past whatever timeout other processes use,
so that they repeatedly suspect it. In a real system, however, we will probably increase the timeout every
time we find that we erroneously suspected a process, and eventually we are highly unlikely to incorrectly
suspect a process.

3



Prof. Talmage CSCI 351: Failure Detectors Spring 2023

4.1 Ω

Another way to think of failure detectors is to think of them as reporting which processes are still live. The
Ω failure detector is one such. Instead of a suspecti array at each process, it maintains a trusti variable
at each process, which stores one process it thinks is currently live. Ω guarantees that eventually every
process’ trusti will hold the ID of the same correct process.

Exercise: Given an Ω failure detector, construct a ♢S failure detector. Do this with no
additional communication.

• For completeness, we can suspect every process that Ω does not trust: suspecti = P \ {trusti}.

• For accuracy, the correct process which is eventually in all trusti’s is no longer in any suspecti, and
thus satisfies the requirements of eventual weak accuracy.

Thus, to implement ♢S, it is sufficient to implement Ω. We consider two kinds of failures: processes may
crash or be arbitrarily slow, and communication links may drop messages or take arbitrarily long to deliver
them. We will restrict ourselves to considering fair communication links: if a message is sent infinitely
many times, it will eventually arrive. We also assume that there is some process which is eventually timely–
it must have a minimum execution speed and there is an upper bound d on the delay of messages from
that process, though d is only required to hold eventually.

These constraints are a type of synchrony assumption, that we are describing more explicitly than by
assuming a failure detector exists. As we saw, these failure detectors cannot exist in a truly asynchronous,
fault-prone system, since if they exist we can solve consensus and FLP precludes solving consensus in
an asynchronous, fault-prone system. Thus, to implement a failure detector, we must assume a certain
amount of synchrony.

See pseudocode on next page. This algorithm still uses heartbeats and timeouts, with the following
optimizations:

• Adaptive timeouts: When we hear from a process, we increase the length of its timeout.

• Message efficiency: Only the current candidate leader sends heartbeats. This means that we only
need n− 1 links to stay active forever, once we stabilize on a single trusted process. However, it also
means that we may timeout on and suspect a process who has already ceded the leader (trusted)
role.

• Accusations: When we timeout on a process, we send an accuse message to it. Note that we only
need to accuse the process itself, not publicize our accusation. If that process is crashed, then we
already suspect it, and everyone else will, as well, when they timeout on it. If it has not crashed, it
will update its counter, unless it realizes that the accusation is out of date because it has already
ceded the leader role and moved to a new phase. A higher counter means that the process will lose
leader competitions.

This algorithm can be modified to work in a system where only one node has all fair links. The two
challenges are (1) that accuse messages can be lost, so we must broadcast and forward them and (2) that
two processes may think that they are leader. We could forward alive messages, but this would mean all
links must continue sending messages forever. Instead, a process that hears from two different leaders will
tell them about each other and let them duel by accusing each other.

4



Prof. Talmage CSCI 351: Failure Detectors Spring 2023

Algorithm 3 Implementation of Ω in system with fair links[1]

Initialization:
1: ∀0 ≤ j < n, counter[j] = 0, phase[j] = 0 ▷ Local view of all processes
2: ∀0 ≤ j < n, i ̸= j, timeout[j] = e+ 1, timer[j] = −1 ▷ Initialize timers
3: active = {i}, leader = ⊥
4: while true do
5: updateLeader()
6: if sendAliveT imer = 0 then
7: send (alive, counter[i], phase[i]) to all others
8: sendAliveT imer = e
9: end if

10: for 0 ≤ j < n, i ̸= j do
11: if receive (alive, jcounter, jphase) from pj then
12: add j to active
13: counter[j] = max{counter[j], jcounter} ▷ Do similar for phase[j]
14: reset timer[j] to timeout[j]
15: end if
16: if timer[j] == 0 then
17: send (accuse, phase[j]) to pj
18: remove j from active
19: increment timeout[j]
20: turn off timer[j] by setting to −1
21: end if
22: if receive (accuse, phase) from pj then
23: if phase == phase[j] then
24: increment counter[i]
25: end if
26: end if
27: end for
28: if sendAliveT imer > 0 then decrement sendAliveT imer

29: for 0 ≤ j < n, i ̸= j do
30: if timer[j] > 0 then decrement timer[j]

31: end for
32: end while
33: function updateLeader
34: newLeader = argminℓ{(counter[ℓ], ℓ) | ℓ ∈ active}
35: if newLeader ̸= leader then
36: If the new leader is me, sendAliveT imer = 0 ▷ Start sending heartbeats
37: If the old leader was me, increment phase[i] and set sendAliveT imer = −1

▷ move to new phase to ignore old accusations, stop sending heartbeats
38: leader = newLeader
39: end function

5



Prof. Talmage CSCI 351: Failure Detectors Spring 2023

5 References

References

[1] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg. On imple-
menting omega in systems with weak reliability and synchrony assumptions. Distributed Comput.,
21(4):285–314, 2008.

[2] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for asynchronous systems (pre-
liminary version). In Luigi Logrippo, editor, Proceedings of the Tenth Annual ACM Symposium on
Principles of Distributed Computing, Montreal, Quebec, Canada, August 19-21, 1991, pages 325–340.
ACM, 1991.

6


	Definition
	Reductions
	Solving Consensus
	Implementing Failure Detectors
	

	References

