
Lecture Notes for CSCI 379: Distributed Computing

Set 7.1-ABD Register Implementations

Professor Talmage

April 17, 2023

1 Problem and Model

In an asynchronous, crash-prone (less than half: f < n/2), point-to-point message-passing system,
we want to implement a SWMR register. First, the paper implements the register using messages of
arbitrary size, then refines the solution to use bounded messages. Finally, they implement registers
in an alternate communication system where links may come and go (we will not discuss this version
in detail).

Note that the paper talks about an atomic register. In registers, this is an equivalent condition
to linearizability, but atomicity is not necessarily defined for other ADTs. So, while the definition
given looks more like regularity, you can use what you know about linearizability.

Definition 1. An atomic register satisfies the following two properties:

• Every Read instance returns the argument of the latest completed Write instance or that of
a concurrent Write instance.

• If two Read instances do not overlap in real time, the value the later instance returns cannot
have been written before that returned by the first instance.

Exercise: How can we speak of “earlier” and “later” Write instances? Convince yourself
that this definition is equivalent to linearizability.

This is a Single-Writer register, soWrite instances are inherently ordered at the writing process.
As we’ve discussed, if we have a SWMR register, then we can implement a MWMR register, so
this paper implies a simulation of MWMR registers in a message-passing system.

2 Communicate: Round-Trip Messages and Quorums

First, the paper builds a communication procedure with specific properties. This procedure will
make implementing the register functions, and then analyzing them, straightforward. There are
two fundamental aspects of this communication procedure to which we should pay attention: ac-
knowledgements and quorums.

First, to guarantee linearizability, we will not want our operations (particularlyWrite) to return
until they are sure other processes are aware of them. If they just sent messages and returned,
those messages could be very delayed, such that another, non-overlapping operation instance could
have invocation, return, message arrival, and effect before this one’s messages arrived and it took
effect. A later Read would then return a stale value, and there would be no legal linearization.

1



Prof. Talmage CSCI 379: ABD-Register Implementations Spring 2022

pw

pr

W (1) W (2)

R(2) R(1)

Since we are in an asynchronous system, we cannot predict how long it will take messages to
arrive, so instead we rely on acknowledgements. That is, whenever we communicate with the sytem,
we wait for acknowledgements from receiving processes. While this may take arbitrarily long, it is
only twice the maximum message delay. Which is twice as long as we need to wait, but probably
optimal when we do not know the maximum message delay.

The issue with this, of course, is that if a process crashes, we could be stuck waiting for an
acknowledgement forever, which is no good. This is the same problem with tolerating crashes in
asynchronous systems that has been haunting us since FLP. But here, there is a solution. Because
we do not need to ensure all processes are in agreement before we conclude our current operation,
we can ignore crashed processes. Thus, when we have received acknowledgements from at least
n − f (more than half) of the processes, we can continue and not be stuck waiting for crashed
processes.

While the word never appears in the paper, this is an early example of a quorum system, which
is a fundamental tool for tolerating crashes. We may continue before some correct processes receive
our message and acknowledge, but we can be confident that the message we sent is “sufficiently”
disseminated. In any future communication, when the sender waits for responses from a majority
of the processes in the system, at least one process whose response it gets must have received the
first communication, and can include that information in its acknowledgement. There are fancier
ways to define quorum systems, since the only necessary property is that each subset (quorum)
overlaps with every other, but majority quorums as used here are by far the simplest and most
common.

Finally, it is worth noting that they define a protocol for using communication links that explic-
itly enforces FIFO reception of messages over a particular message channel, so the example above
is already impossible, before all the stronger guarantees of quorums.

3 Register Implementation

Now we can consider the actual register implementation. To start, I’ll give informal pseudocode
for the general idea. Note that the paper leaves out the values and Read returns, just focusing on
choosing the latest timestamp. (Note that in this algorithm, timestamps are just sequence numbers,
and I use those terms interchangeably here.)

Exercise:

• What are the complexities of Read and Write?

• Argue that non-overlapping Read instances return values in the order in which they
were written.

2



Prof. Talmage CSCI 379: ABD-Register Implementations Spring 2022

Algorithm 1 Informal pseudocode for intuition of the unbounded register implementation. Except
for Write(), code for pi.

1: function Read
2: Send R1 to all, wait for responses containing timestamps. ▷ Get values from other readers
3: Set local timestamp to largest received, local value correspondingly.
4: Send R2 to all, attaching largest timestamp. ▷ Reader writes
5: Wait for responses to ensure ordering.
6: return local value
7: end function
8: function Write(x)
9: seqNum++

10: Send seqNum and x to all, wait for responses to ensure ordering.
11: end function
12: Upon event: received ⟨W, tsw⟩ from pw
13: If new timestamp larger than local timestamp, update local value and timestamp to those

received.
14: end Upon event:
15: Upon event: received R1 from pj
16: Send ACK and local timestamp/value pair to pj
17: end Upon event:
18: Upon event: received R2, tsj , xj from pj
19: Update local timestamp and value if tsj is larger
20: Send ACK to pj
21: end Upon event:

3



Prof. Talmage CSCI 379: ABD-Register Implementations Spring 2022

4 Bounding Timestamps

Since sequence numbers can increase without bound, running this register implementation for any
significant computation will result in unusably large message sizes. To get around this, the paper
implements a bounded timestamp system extant in the literature. The idea is that each process
tracks the set of timestamps which are currently in use, and can then obtain a new timestamp from
a finite domain that is larger than any currently-used timestamp. In the code, this is achievable by
overloading the max and ++ commands. The complexity comes from saving each new timestamp
seen, and discarding timestamps no longer in use.

Idea:

• Write now needs two rounds of communication: one to collect active timestamps and one to
send the new value and timestamp (which is larger than any currently active).

• Since the writer can only count on hearing back from a majority of processes, the set of active
timestamps must be maintained by quorum.

• When a process learns of a new, larger timestamp, it sends it to all processes and waits for
majority acknowledgement.

• Each process stores an n× n× 2 array of all the timestamps it hears about.

• Would need to read the referenced bounded timestamp paper for details, but only need O(n)
bits to store bounded timestamps.

Note that this is actually only better than unbounded timestamps (except for predictability of
message size), when there are o(2n) Write instances in your execution.

4


	Problem and Model
	Communicate: Round-Trip Messages and Quorums
	Register Implementation
	Bounding Timestamps

