Lecture Notes for CSCI 351: Distributed Computing
Set 7-Register Strengthening

Professor Talmage

April 12, 2023

One of the many uses of simulation is to provide stronger objects in a system that actually only provides
weaker ones. We previously discussed consensus objects and universality in wait-free systems, but now
that we have a more formal view of simulations, we will zoom in to consider different types of Read/Write
registers and how we can get stronger versions from weaker ones.

1 Model

Our communication system is now a wait-free (asynchronous, up to n — 1 crashes) shared memory system.
This is relatively simple to model as abstraction layers in a simulation stack, as we already specify ADTs
solely by their interface (and now you know why I have drilled this specification format into you for
years!). The interface for the communication system is now the ADT interface of the data type we assume
is provided by the system. We just need to implement the functions of the desired ADT, using calls to the
functions provided by the communication system.

The big complication is that function invocations and responses are now separate events. We impose a
user condition that a particular user process may not invoke an operation while it has an instance pending—
it has invoked an operation but not yet received a matching response. An implementation must conversely
satisfy a liveness condition: it must send (exactly one) response to every invocation. An operation instance
is an invocation-response pair of events.

1.1 Consistency Conditions

With separate invocations and responses from different processes, we need a more robust way to discuss the
legality of an ADT implementation’s behavior. Recall that an ADT specifies legal sequences of operation
instances. But in a distributed system with instances at different processes which may overlap in real time,
there is not a single sequence for a given execution we can check for membership in the legal set to see if
the implementation is behaving correctly. We fix this gap with Consistency Conditions.

A consistency condition tells us how to map the concurrent behavior of a particular data structure
to the sequential world of ADT specifications. We can then take any execution of the structure, convert
appropriately by the consistency condition, and check the resulting sequence(s) against the ADT. If every
possible execution maps to a legal sequence, then the implementation is correct. If some execution does
not map to a legal sequence, then the implementation is incorrect.

There are many consistency conditions in the literature. We will focus on two for the moment.

Definition 1. An execution E of an ADT implementation is linearizable if there exists a permutation P
of all operation instances in F such that

1. Each object’s behavior must be legal: For each shared object O, P|o is a legal sequence on O.

2. The permutation must respect real-time order: If the response of operation instance ¢ occurs before
the invocation of operation instance r, then ¢ appears in p before r.

Prof. Talmage CSCI 351: Register Strengthening Spring 2023

An algorithm A is linearizable if every admissible execution of A is linearizable.

Consider the following execution which contains three operation instances, indicated by rectangles
(invocation is the left end, response is the right end):

Po 0opo

P2 — op2 —

Exercise: Draw (or list) all possible permutations of these three operation instances. Mark
which ones respect real-time order of non-overlapping instances.

Exercise: Suppose that this is an execution of a Read/Write register implementation, and
that opa = Write(0), opg = Write(1), and op; is a Read. What value(s) should op; return?

Note that the correct value for op; to return depends on the linearization. Now, while this should
help us understand how linearizability restricts the possible behaviors of an ADT implementation, we are
actually using it backwards. In reality, the algorithm will determine what op; returns, and then we will be
checking whether there is a linearization (permutation respecting real time order) that is legal.

Exercise: Is there an illegal value for op; to return in this execution? ‘

In this particular case, there is a legal linearization for op; = Read(—,0) and for op; = Read(—, 1), so
the algorithm could return either and still be correct. We may need to look at other executions to try to
find cases where an algorithm is incorrect. Of course, if op; returned a value besides 0 or 1, that would be
incorrect.

Proving that an algorithm is correct requires proving that for every possible execution, there is a legal
linearization. This can be complicated.

Definition 2. An execution F of an ADT implementation is sequentially consistent if there exists a
permutation P of all operation instances in F such that

1. P is legal.

2. For each i € [0,n — 1], P|; is the order of invocations at process p;. P|; is the restriction of P to
instances at process p;.

An algorithm A is sequentially consistent if every admissible execution of A is sequentially consistent.

Prof. Talmage CSCI 351: Register Strengthening Spring 2023

Exercise: What must the last Read instances at each process return in the below execution to
satisfy sequential consistency?

po — Write(0) — Read(?) ——

p1 — Write(1) H Write(0)

P2 4 Read(1) + Read(0) Read(?) ——

‘Exercise: Give an execution which is sequentially consistent but not linearizable.

We will be focused on linearizable implementations for the moment.

2 Registers

We will start with the most basic version of a register and build stronger and more advanced versions
by adding consecutive abstraction layers. Our starting point is a single-bit, Single-Writer Single-Reader
(SWSR), Read/Write register. The eventual goal will be to create a multi-valued, Multi-Writer Multi-
Reader (MWMR), Read/Write register. You can think of this as an int object shared by all processes
in the system. We will not go all the way in one step, instead adding one feature at a time until we have
everything we want.

2.1 Binary to Multi-Valued

Idea 1: Binary representation. We can represent values from the larger domain of possible values in
binary and use a collection of single-bit registers to store that value. Write would need to be able to
update all the individual bits, Read would need to read all of them.

e | Exercise: What happens when a Write and a Read overlap?

— If the Write has updated some, but not all, the bits, Read could return a value which was never
stored!

— For example, if the old value was 1111 and we are writing 0000, a Read might return 1100.

e Need Write to appear to be a single step, so Read cannot happen in the middle of a Write.

e A locking or mutual exclusion mechanism would work, but that is hard to implement. General mutual
exclusion would also be counter-productive, since we want multiple Read instances to be able to run
concurrently. But we would also need fairness to ensure that an endless chain of Read instances does
not prevent any Write from completing.

e If we only care that Read instances not overlapping any Write instance behave correctly (a safe
register), this algorithm is viable. I have not yet found results indicating whether this approach can
provide regularity (every Read returns the value of a previous or overlapping Write) or atomicity/-
linearizability.

Prof. Talmage CSCI 351: Register Strengthening Spring 2023

Idea 2: Unary representation. If we want to store v distinct values (say, 0 to v — 1), we use v bits. If the
register holds value x, bit x is set to 1.

o Write(x) sets bit z to 1.

e Read() scans across the array to find the first index containing a 1.

Exercise: What is wrong with this implementation? Describe a specific execution that will not
behave as expected.

o Write needs to clear the old bit. If it doesn’t, you can never increase the stored value.

Exercise: Should Write clear the old bit before or after setting the new bit?

e Before: A Read could never find a bit set to 1. Looping until a bit is set is not wait-free.

e After: Same problem with increasing Writes not being visible. Even worse, consecutive Reads by
the same process can see out-of-order values.

Exercise: Try to construct an execution where this happens.

Consider the following execution fragment. v = 4, and the register holds 3 at the beginning of the

figure.
Read(—,?2) Read(—,1)
[| T |
Reader — 75— I i 1
o :ol | 2]:1 | [1] :11
[1]:0 [0]: 0
Write(1) Write(2)
: [| | |
erter 1 T T I W T

=1l =ol
2] =1

We can resolve this issue with a one-sided clear: observe that we do not need to clear higher indices,
as Read stops when it first sees a 1. Reads could still be returning stale values, though, as a Write could
have set a lower bit, which the Read already passed. Thus, Read can search until it finds a 1, then search
back down to see if a smaller value has been written since, and return the smallest value it sees.

Complexity:
o Write takes at most v steps, waits for no one.

e Read takes at most 2v steps, waits for no one.

Correctness: We need to show that there is a linearization of the Read and Write instances in an
arbitrary execution which is legal by the specification of a register (each Read returns the argument of the
latest preceding Write). We will actually do this by building a legal order P, then showing that it respects
real time order.

e Observe that since there is a single writer, the order of Writes is well-defined, so place them all in
P in invocation order.

Prof. Talmage CSCI 351: Register Strengthening Spring 2023

Algorithm 1 Pseudocode for simulating a multi-valued register with binary registers.
Binary registers datal0..v — 1]: Initially data]0] = 1, data[l..k] =0

1: function WRITE(z)

2: data[z] =1

3: for i = x — 1 downto 0 do

4: datali] =0

5: end for

6: Trigger return for Write

7: end function

8: function READ

9: 1=20

10: while datali] == 0 do i + +
11: end while

12: highOne =v =1

13: for ¢ = highOne downto 0 do
14: if datalil| ==1: v =1

15: end for

16: Trigger return for Read with value v
17: end function

e Similarly for Reads, there is a well-defined order. For each Read instance r, in order, place r in P
immediately before the Write instance following that whose argument r returns, or at the end of P
if none such exists. (This is awkward wording, but the order is important!)

e It should be evident that P is legal, since each Read was placed after the Write whose value it
returned, and possibly some other Read instances.

e We now have four cases to prove that P is a valid linearization. If operation instance op; precedes
instance opo in real time, we must show that op; appears in P before opo.

Exercise: Prove this is true if both op; and ops are Write instances and if op; is a Read
instance and ops is a Write instance.

e The other two cases are more involved, so refer to the textbook.

2.2 Single-Reader to Multi-Reader

Exercise: Try to think about how to implement a multi-reader register from single-reader
registers. What is the primary challenge?

We have to maintain separate banks of SWSR registers for each reader, and we have to update them
“simultaneously”, so that one reader cannot get a stale value after the other reader has seen a new value
the writer has not finished writing to the first reader’s bank. Note that, we don’t actually need to reason
about “banks” of SWSR registers, since we can build on our previous abstraction and use multi-valued
SWSR registers. These may (or may not) consist of multiple smaller registers, but that is hidden in the
abstraction, so we can consider just one SWSR register for each reader.

Idea 1 One SWSR register for each reader.
e Write writes to all SWSR registers.

e Read reads the single SWSR register for that reader.

Prof. Talmage CSCI 351: Register Strengthening Spring 2023

e This is wait-free, as each operation depends on no one else.
e This algorithm will not satisfy linearizability.

e We can actually prove that there is no way to satisfy linearizability without a mechanism for com-
munication between the readers.

Theorem 1. In any wait-free simulation of a SWMR register from SWSR registers, at least one reading
process must perform a low-level (SWSR) Write.

Proof. Assume not. Consider readers ry, 9.
e 11,79 read from disjoint sets of SWSR registers, since each register has a single reader.

e A Write instance must perform SWSR writes on some subset of these registers in some order (recall
that only the SWMR writer can write, by our assumption).

e Find the points where r; and ro first “detect” the Write instance. That is, the point where if we
paused the Write and let r; and ry continue, they would return the new value. Call these points in
the code for Write Uy and Us.

e U; # U,, since each step only writes a single register, so the step that makes r; detect the Write is
invisible to ro and vice versa. WLOG, U; is before Us.

e Build an execution where the writer runs to U, then r; runs, seeing the new value, then ry runs,
seeing the old value. This is not linearizable, since non-overlapping Read instances must be linearized
out of order.

This contradicts the assumption that readers never write.]

Idea 2: Readers must use more SWSR registers to communicate among themselves to order Read in-
stances.

Exercise: How might they do this? What information do we need them to communicate?

e The writer tags each Write instance with a sequence number.

e Readers announce the timestamp of the last Write instance they read.

See pseudocode in Algorithm

Exercise:

e Show that this algorithm is wait-free. What is its complexity (count low-level operation
instances)?

e Build a permutation of all instances in an arbitrary execution that is legal.

e Argue that your permutation respects the real-time order of non-overlapping instances.

As before, place Write instances in permutation 7 in invocation order. Note that this is timestamp
(sequence number) order. Next, consider each Read instance in real-time return order. Add each to 7
immediately before the Write instances following that whose argument the Read instances returned.

Prof. Talmage CSCI 351: Register Strengthening Spring 2023

Algorithm 2 Pseudocode implementing a SWMR register from SWSR registers.
Pw is the writing process. p1,...,p, are reading processes.
Shared variables:
val[l..n]: Each val[i] is a SWSR register written by p,,, read by p;.
report[l..n,1..n]: Each report[i, j] is a SWSR register written by p;, read by p; used to announce p;’s
most recent Read.
Local variables for readers: v[0..n],s[0..n]: values and sequence numbers. v[0],s[0] hold info from
writer, v[j], s[j] hold info from p;.
1: function READ > code for invocation at p;
2 v[0], s[0] = valli]
3 for i =1ton do
4 v(j], slj] = report|j, il
5: end for
6
7
8
9

m = argmax;{s[j]} > index with largest sequence number
for j =1tondo
report[i, j] = (v[m], s[m])

end for
10: Trigger Read response with value v[m]
11: end function
12: function WRITE(v) > at single writer p,,
13: seq + +
14: for i =1ton do
15: valli] = (v, seq)
16: end for

17: Trigger Write response
18: end function

Lemma 1. Let opy and ops be two high-level Read or Write instances s.t. opy returns before, in real time,
op2’s invocation. Then opy is before opy in the permutation of all instances.

Proof. Write options are in real-time order, by construction. Consider the possible cases for op; and ops:

e op; is a Read, opy is a Write: Assume in contradiction that we linearized ops before op;. then op;
reads from opy or a later Write, which implies that op; reads from a Write instance which was
invoked after op; returned, an impossibility.

e op; is a Write, ops is a Read: ops must low-level read the argument of op; or a later Write, by
the linearizability of the low-level registers. Since we always return the largest-timestamped written
value, opy will return the argument of op; or a later Write, so it will linearize after op;.

e op; and opy are both Read: By linearizability of the low-level registers, ops will receive opy’s report
and return a value with a timestamp at least as large. Thus, opy will linearize after op;, since we
place it in 7 later, before the same or a later Write instance.

O]

2.3 Single-Writer to Multi-Writer

The big difference here is that we will need to order Write instances, since they do not all come from the
same process. The readers-must-write result should not cause us any trouble, as the lower-level SWMR
implementation handles that.

Exercise: How might we order Write instances? Can you extend that to an idea for the whole
simulation?

Prof. Talmage CSCI 351: Register Strengthening Spring 2023

Idea: Use vector clocks to timestamp Write instances and get a total order.

Note that we will (yet again) modify our vector clocks. Causal order is partial, we need total. Use
lexicographic order on timestamps. That is, compare place-by-place and order according to the first
difference.

When we did vector clocks before, we were in message passing. In shared memory, to communicate
our clock vector, we write it in a register. SWMR registers are perfect for this, since no one else
should write a given process’ local clock.

Denote writers as po, ..., pm—1. All processes are pg,...,Pn_1-

Each writer (po,...,pm) will have a Val register, with p; writing Val[i]. All processes can read all
Val registers. Holds register value and timestamp of Write.

Algorithm 3 Pseudocode for simulating multi-writer registers. Code for p;, readers do not need the Write
function.
1: function READ

2 for j=0tom —1do

3 (vl tslj]) = Vallj]. Read()

4 end for

5 newest = argmaz;(ts[j])

6: Trigger Read response with value v[newest|

7: end function

8: function WRITE(z)

9: ts = getNewT S()

10: Valli].Write(x, ts)

11: Generate Write response

12: end function

13: function GETNEWTS > Helper function

14: for j=0tom—1do

15: newT'S[j] = Val[j][1][J] > Read what p; wrote, get the timestamp from the pair, read p;’s
component.

16: end for

17: newT S[i] = newTS[i] + 1

18: return newT'S

19: end function

Exercise: Why does getNewTS not need to read other processes’ opinions of each others’ clocks?
(Recall that in message passing, we would update our view of, e.g., p2’s component based on a
message from pj.)

Complexity

‘Exercise: Argue that this code is wait-free and analyze the complexity of each function.

e O(m) low-level operation instances for each function, never waiting for another process.

Prof. Talmage CSCI 351: Register Strengthening Spring 2023

Correctness Consider an arbitrary execution of the algorithm. We prove several lemmas:
Lemma 2. FEach process publishes timestamps in increasing order.

Proof Idea: getNewTS updates the writing process’ component to more than the last call’s, and no other
process ever decreases its own component, so by linearizability of the low-level registers, each component of
the new timestamp is at least as large as that of a previous timestamp, and the calling process’ component
is strictly larger.

e It is critical that our lower-level SWMR registers do not have new-old inversions.

Construction 1. Define the permutation 7 of all operation instances in an execution by ordering Write
instances lexicographically by timestamp. Then consider all Read instances in increasing real-time order
of response. Add each to m immediately before the Write instance following that whose timestamp the
Read instance returned. [1

Lemma 3. 7 respects the real-time order of non-overlapping instances.

Exercise: Prove this lemma. Split into groups to consider the three cases:
e Read then Write
o Write then Read
e Read then Read

Why is Write then Write not worthy of separate consideration?

Lemma 4. 7 is a legal sequence by the specification of a register.
Follows by construction.

Theorem 2. This algorithm is a correct, wait-free implementation of a MWMR register from SWMR
registers.

Note that this is a very typical proof structure for a distributed ADT implementation, whether in
shared memory or in message passing. We start with an arbitrary execution, and need to prove that each
invocation has a matching response (part of wait-free here), then construct a total order of all instances,
prove that it is a valid linearization, and prove that it is legal by the ADT specification. We typically
design our algorithm and order together so that either the proof that the permutation respects real-time
order of non-overlapping instances or the proof of legality (as we did here) is trivial.

! Read instances do not return timestamps, but they return the argument of a particular Write, so we can abuse terminology
to refer to the timestamp of that Write instance.

	Model
	Consistency Conditions

	Registers
	Binary to Multi-Valued
	Single-Reader to Multi-Reader
	Single-Writer to Multi-Writer

