
Lecture Notes for CSCI 351: Distributed Computing

Set 6-Simulations

Professor Talmage

March 31, 2023

We have talked some about simulations, in the context of using di�erent ADTs to solve consensus, but

have not treated them generally or formally. Simulations are core to much of distributed computing, since

we can use them to hide undesired behavior and run algorithms for easy systems on real systems that are

more di�cult. We will look at providing stronger guarantees, tolerating faults, hiding asynchrony, and

simulating shared memory in message passing systems. But �rst, we need to set up the formalisms we

need.

1 Modeling Problems as Simulations

A simulation is an abstraction layer, translating a system model or interface and its allowed interactions

into a di�erent model or interface.

user program 1 user program 2

simulation alg 1 simulation alg 2

Communication System

call

input output

response call

input output

response

call

input output

response call

input output

response

To specify a simulation, we need to think about each part of a distributed system in terms of its input

and output (the top interface in the above �gure). This is very similar to how we specify ADTs, and

we informally did this when we represented the Consensus problem as an ADT. We were in a sense just

representing it by its interface, so that we could simulate its behavior using di�erent ADTs as a lower

layer.

Assumptions:

� An object at a higher level can call any function provided by a connected object at the next lower

level at any time.

� Assume local computation is instantaneous. This restricts our attention to communication costs. In-

tuitively, the only delays we care about are between when we ask a lower-level object to do something

1



Prof. Talmage CSCI 351: Simulations Spring 2023

and when it sends a response back (though we may sometimes not need to wait for such a response).

The communication system may impose some time cost between events.

� Note that the picture is limited, and a lower level object can generate outputs that are not responses

to call from the higher level object.

� An object can require a certain behavior from a higher level. For example, a Mutual Exclusion object

requires its user to in�nitely cycle through Entry, Critical, Exit, Remainder in order. If the higher

level does not follow such requirements, the object can behave arbitrarily.

1.1 Example Model and Problem:

Consider a message-passing system model. We can represent this model by an upper interface as follows,

then discuss what guarantees that interface provides and build abstractions on top of it.

De�nition 1. An asynchronous message passing system provides an interface of two types of events:

� sendi(S), an input event. Process pi sends the (possibly empty) set of messages S. Each message

indicates sender and recipient s.t. S contains at most one message for each process connected to pi.

{ This is a constraint on the user{you cannot try to send messages to non-adjacent processes.

� receivei(R), an output event. Process pi receives the set of messages R, where each message in R

speci�es pi as its recipient.

A sequence of these events is allowable if there is a function from the union of all sets R to the union

of all sets S. The following conditions must also hold:

� Integrity: Every received message maps to a previously sent message with the same content. (No

corruption, no phantom messages.)

� No Duplicates: Each message sent is received once (function is one-to-one).

� Liveness: Every message sent is received (function is onto)

To consider failures of the messaging system, we will weaken one or more of these conditions.

We can similarly specify a problem in the same style. Note that when we say \problem" in this context,

we are really just specifying the behavior we want the simulation layer to provide. Solving a problem is

implementing an abstraction layer that provides that behavior as its upper interface, connecting its lower

interface with the upper interface of whatever model or other abstraction layers we assume are present.

De�nition 2. The broadcast problem provides the following interface:

� bc-sendi(s), an input event. pi sends message s to all processes.

� bc-recvi(r; j), an output event. pi receives message r broadcast by pj .

Allowable sequences are those where there is a function k from every bc-reci(m; j) to an earlier sendi(m)

satisfying

� Integrity: k is well-de�ned.

� No Duplicates: For each i, the restriction of k to bc-recvi events is a one-to-one function.

� Liveness: For each i, the restriction of k to bc-recvi events is an onto function.

Exercise: Explain, in English, what the conditions for broadcast mean (well-de�ned, one-to-

one, onto). What types of behavior do they allow or disallow?

Exercise: Give an abstraction-layer style de�nition of an asynchronous shared memory system.

Pick a single ADT and give the speci�cation for that system, then think about how to generalize.

2



Prof. Talmage CSCI 351: Simulations Spring 2023

2 Strengthening Broadcast

Exercise: Write an implementation of broadcast as de�ned above. Think about code structure{

what events do we need to handle? What tools are available to us?

Algorithm 1 Basic broadcast implementation, code for pi

Upon event: bc-send(m)

for 0 � j � n� 1; j 6= i do

send(hm; i; ji) . Notation: hcontent; sender; recipienti
end for

end Upon event:

Upon event: receive(hm; j; ii) . Formalism says this could be a set of messages,

Trigger event bc-recv(m; j) . we'll handle one at a time.

end Upon event:

While broadcast is useful, and straightforward to implement, we often want even stronger guarantees.

For example, if p0 and p1 broadcast messages m0 and m1, in what order should other processes receive

those messages? If p2 receives m0 �rst, does p3 also? There are, generally, two categories in which desired

broadcast guarantees fall:

� Ordering: Do all processes receive all broadcast messages in the same order? Is that order related

to the real-time order of bc-sends? Do processes at least receive messages from the same sender in

send order?

� Reliability: If broadcasting processes crash, do other processes receive the same set of messages?

In the same order? If a correct process broadcasts, can it be sure that its message is received?

2.1 Ordering

Exercise: Give one or more ordering properties you might like broadcast to guarantee.

Here are three possible ordering constraints we could de�ne for broadcast (there may be others). We

state the claims in the negative, so that we can later weaken the liveness assumption when considering

failures.

1. Single-Source FIFO: For all messages m;n and all processes pi; pj , if pi broadcasts m, then later

broadcasts n, pj does not bc-recv n before m.

2. Totally Ordered: For all messages m;n, processes pi; pj , if pi receives m before n, then pj does not

receive n before m.

3. Causally Ordered: For all messages m;n, and processes pi; pj , if pj sends n and m � n, then pi does

not receive n before m.

� We de�ne the happens-before relation for messages m;n as m � n if bc-recj(m) happens-before

(as previously de�ned) bc-sendj(n).

Exercise: Consider the following example execution. Which broadcast ordering constraints

does it satisfy? Which does it not satisfy?

� This execution is Totally-Ordered, since all processes receive broadcast messages in same order.

3



Prof. Talmage CSCI 351: Simulations Spring 2023

� This is not SSFIFO, since the receive order doesn't match the sending order of messages from the

same process.

� This is causally ordered, vacuously, as neither of the two messages happened before the other.

p0

p1

bc-send(a) bc-send(b)

bc-recv(a)

bc-recv(b)

bc-recv(a) bc-recv(b)

Exercise: What are the relationships between the three types of broadcast? For every pair of

conditions A and B where A 6) B, draw executions which satisfy A but not B.

To implement these guarantees, we need to go back and write code for a new broadcast abstraction

layer, on top of the simple message-passing layer. That is, we need to write code that handles bc-send

events from above and receive events from below, generating send events below and bc-recv events above.

user program 1 user program 2

Broadcast alg 1 Broadcast alg 2

Message Passing System

bc-send(m)
bc-recv(m; j)

bc-send(m)
bc-recv(m; j)

send(m; j)
receive(m; j)

send(m; j)
receive(m; j)

Exercise: Implement broadcast providing each of the three guarantees.

Ideas:

� SSFIFO: Each process appends a sequence number to its messages. Only bc-recv a message when

all smaller sequence numbers from that sender have been bc-recv'd.

� Causally Ordered: Use vector clocks. Cannot deliver a broadcast message until your vector clock

is at least as large as the message's, except for the sender's component, where your clock should be

one lower than the sender's. Only update the vector clock when you deliver a broadcast message,

not when you receive low-level messages.

� Totally Ordered: Implement on top of SSFIFO broadcast, making the abstraction stack one layer

taller.

{ Use Logical clocks and a modi�ed form of vector clocks.

{ Tag messages with logical clock timestamp (single integer).

{ When you update your logical clock, send a \background" message to update others' clocks.

{ Update component of vector corresponding to pj to t when con�dent (from SSFIFO) we cannot

receive a message from pj with timestamp smaller than t.

4



Prof. Talmage CSCI 351: Simulations Spring 2023

{ bc-recv a message when all components of vector clock are greater than t.

{ To prove, show that timestamps are all comparable and all processes deliver all messages in

timestamp order.

3 Reliability

Another property of a communication system we may wish to hide is failures. As an example, we will

consider implementing a failure-tolerant Broadcast primitive. This does not prevent process failures, but

should enable processes to broadcast messages with some expectation that it will \work", even if processes

crash.

Assume we have an asynchronous, point-to-point (only provides send and receive) message passing

system of n processes, at most f of which may crash. We update the Liveness condition for our underlying

system to the following:

� Nonfaulty Liveness: Every message sent by a nonfaulty process to another nonfaulty process is

eventually received.

Exercise: What condition(s) would you like a fault-tolerant broadcast algorithm to guarantee?

State in English and formally.

� Integrity: For each process pi, the restriction of k to bc-recvi events is well-de�ned. (Every message

was previously sent.)

� No Duplicates: for each pi, kji is one-to-one.

� Nonfaulty Liveness: When k's range is restricted to correct processes, for every correct pi, kji is
onto. That is, every bc-send at a correct process is received by all correct processes.

� Faulty Liveness: If some correct process bc-recv's a message m, every correct process bc-recv's m.

Thus, if a crashing process broadcasts a message, either all correct processes receive it or none do.

Exercise: Write pseudocode for a reliable basic broadcast algorithm.

Idea: When receiving a message for the �rst time, bc-send that message in case the sender didn't manage

to send it to all processes, then bc-recv it. If any correct process receives it, then it will have forwarded it

to all correct processes, so they will all get it.

Exercise: How can you make any of our ordered broadcasts reliable?

We can simply add the repeating mechanism for basic broadcast in most cases. The sneaky one is that

we cannot implement totally-ordered reliable broadcast (also called atomic broadcast) in an asynchronous,

fault-prone system.

Exercise: Why is it impossible to implement totally-ordered reliable broadcast in an asyn-

chronous, fault-prone system? Which previous impossibility result would that circumvent?

We can use totally-ordered reliable broadcast to solve consensus, which in this model would contradict

FLP.

5


	Modeling Problems as Simulations
	Example Model and Problem:

	Strengthening Broadcast
	Ordering

	Reliability

